Homework 1

Due September 6th

Problem 1 (Equivalence relations) : Let $f: X \to Y$ be a function and let $x_1 \sim x_2$ hold if $f(x_1) = f(x_2)$.

- 1. Show that \sim is an equivalence relation on X.
- 2. Assume that f is surjective. Show that there exists a bijection $g: Y \to \{\overline{x} : x \in X\}$, where \overline{x} denotes the ~-class of x.

Problem 2:

- 1. Which are the $x \in \mathbb{Z}$ such that there exists $y \in \mathbb{Z}$ with $x \equiv y^2 \mod 9$.
- 2. Which are the $x \in \mathbb{Z}$ such that there exists $y, z \in \mathbb{Z}$ with $x \equiv y^2 + z^2 \mod 9$.
- 3. Show that if $x, y, z \in \mathbb{Z}$ are such that $x^2 + y^2 \equiv 12 \cdot z^2 \mod 9$, then $x \equiv y \equiv z \equiv 0 \mod 3$.
- 4. Show that if there exists $x, y, z \in \mathbb{Z}_{>0}$ such that $x^2 + y^2 = 12 \cdot z^2$ then there exists $x', y', z' \in \mathbb{Z}_{>0}$ such that $(x')^2 + (y')^2 = 12 \cdot (z')^2, x' < x, y' < y$ and z' < z.
- 5. Conclude that if $x, y, z \in \mathbb{Z}$ are such that $x^2 + y^2 = 12 \cdot z^2$ then they are all equal to 0.

Problem 3:

Let G be a non empty finite set and \cdot a binary operation on G such that:

- The operation \cdot is associative;
- For all x, y and $z \in G$ if $x \cdot y = x \cdot z$ then y = z and if $y \cdot x = z \cdot x$ then y = z.
- 1. Show that there exists $e \in G$ such that for all $x \in G$, $e \cdot x = x$.

(*Hint:* Show that for some $a \in G$, there exists e such that $e \cdot a = a$ and that any $x \in G$ can be written as $a \cdot y$ for some $y \in G$.)

- 2. Show that we also have $x \cdot e = x$ for all $x \in G$. (*Hint:* Show that there exists e' such that $x \cdot e' = x$ for all $x \in G$ and that e' = e).
- 3. Show that (G, \cdot) is a group.