Homework 1

Due September 6th

Problem 1 (Equivalence relations) :
Let $f: X \rightarrow Y$ be a function and let $x_{1} \sim x_{2}$ hold if $f\left(x_{1}\right)=f\left(x_{2}\right)$.

1. Show that \sim is an equivalence relation on X.
2. Assume that f is surjective. Show that there exists a bijection $g: Y \rightarrow\{\bar{x}: x \in X\}$, where \bar{x} denotes the \sim-class of x.

Problem 2:

1. Which are the $x \in \mathbb{Z}$ such that there exists $y \in \mathbb{Z}$ with $x \equiv y^{2} \bmod 9$.
2. Which are the $x \in \mathbb{Z}$ such that there exists $y, z \in \mathbb{Z}$ with $x \equiv y^{2}+z^{2} \bmod 9$.
3. Show that if $x, y, z \in \mathbb{Z}$ are such that $x^{2}+y^{2} \equiv 12 \cdot z^{2} \bmod 9$, then $x \equiv y \equiv z \equiv 0$ $\bmod 3$.
4. Show that if there exists $x, y, z \in \mathbb{Z}_{>0}$ such that $x^{2}+y^{2}=12 \cdot z^{2}$ then there exists $x^{\prime}, y^{\prime}, z^{\prime} \in \mathbb{Z}_{>0}$ such that $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=12 \cdot\left(z^{\prime}\right)^{2}, x^{\prime}<x, y^{\prime}<y$ and $z^{\prime}<z$.
5. Conclude that if $x, y, z \in \mathbb{Z}$ are such that $x^{2}+y^{2}=12 \cdot z^{2}$ then they are all equal to 0 .

Problem 3 :

Let G be a non empty finite set and • a binary operation on G such that:

- The operation • is associative;
- For all x, y and $z \in G$ if $x \cdot y=x \cdot z$ then $y=z$ and if $y \cdot x=z \cdot x$ then $y=z$.

1. Show that there exists $e \in G$ such that for all $x \in G, e \cdot x=x$.
(Hint: Show that for some $a \in G$, there exists e such that $e \cdot a=a$ and that any $x \in G$ can be written as $a \cdot y$ for some $y \in G$.)
2. Show that we also have $x \cdot e=x$ for all $x \in G$.
(Hint: Show that there exists e^{\prime} such that $x \cdot e^{\prime}=x$ for all $x \in G$ and that $e^{\prime}=e$).
3. Show that (G, \cdot) is a group.
