Solutions to homework 2

Due September itth

Problem I (Order) :

I. Find the order of every element in $(\mathbb{Z} / 18 \mathbb{Z},+)$ and of every element of $\left((\mathbb{Z} / 18 \mathbb{Z})^{\star}, \cdot\right)$. (You should start by giving a list of the elements of $\mathbb{Z} / 18 \mathbb{Z}$ that have a multiplicative inverse; there are six of them).

Solution: $\ln (\mathbb{Z} / 18 \mathbb{Z},+)$:

- The order of $\overline{0}$ is 1 .
- The order of $\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{13}$ and $\overline{17}$ is 18 as they are prime with 18 .
- The order of $\overline{2}, \overline{4}, \overline{8}, \overline{10}, \overline{14}$ and $\overline{16}$ is 9 as their gcd with 18 is 2 .
- The order of $\overline{3}$ and $\overline{15}$ is 6 as their gcd with 18 is 3 .
- The order of $\overline{6}$ and $\overline{12}$ is 3 as their gcd with 18 is 6 .
- The order of $\overline{9}$ is 2 as its gcd with 18 is 9 .

The six elements of $\left((\mathbb{Z} / 18 \mathbb{Z})^{\star}\right.$ are $\overline{1}, \overline{5}, \overline{7}, \overline{11}, \overline{13}$ and $\overline{17}$ (indeed n is prime with 18 if and only if there exists k and $l \in \mathbb{Z}$ such that $n k+18 l=1$ i.e. $n k=1 \bmod 18$).

- $\overline{1}$ has order 1
- $\overline{17}$ has order 2 since $17^{2} \equiv(-1)^{2} \equiv 1 \bmod 18$.
- $\overline{7}$ and $\overline{13}$ have order 3 since $7^{3} \equiv 49 \cdot 7 \equiv-5 \cdot 7 \equiv-35 \equiv 1 \bmod 18$ and $13^{2} \equiv$ $(-5)^{3} \equiv 25 \cdot(-5) \equiv-7 \cdot 5 \equiv 1 \bmod 18$ but $7^{2} \equiv 49 \equiv 13 \equiv 1 \bmod 18$ and $13^{2} \equiv$ $(-5)^{2} \equiv 25 \equiv 7 \equiv 1 \bmod 18$.
- Finally, we have $5^{2} \equiv 25 \equiv 7 \bmod 18,11^{2} \equiv \equiv(-7)^{2} \equiv 49 \equiv 13 \bmod 18$ and 7 and 13 have order 3 . Moreover $5^{3} \equiv(-13)^{3} \equiv-(13)^{3} \equiv-1 \bmod 18,5^{4} \equiv 25^{2} \equiv$ $(7)^{2} \equiv 13 \bmod 18,5^{5} \equiv(-13)^{5} \equiv-13 \cdot\left(13^{2}\right)^{2} \equiv 5 \cdot 7^{2} \equiv 5 \cdot(-5) \equiv-25 \equiv 11$ $\bmod 18,11^{3} \equiv(-7)^{3} \equiv-(7)^{3} \equiv-1 \bmod 18,11^{4} \equiv 49^{2} \equiv(-5)^{2} \equiv 7 \bmod 18$, $11^{5} \equiv(-7)^{5} \equiv-7 \cdot\left(7^{2}\right)^{2} \equiv-7 \cdot 13^{2} \equiv-7 \cdot 7 \equiv-49 \equiv 5 \bmod 18$. So $\overline{5}$ and $\overline{11}$ have order 6 .

2. Let G be a group, $a, b \in G$. Show that the order of $a b$ is equal to the order of $b a$.

Solution: Let n be the order of $a b$. We have $(a b)^{n}=1$ and hence $(b a)^{n}=b(a b)^{n} b^{-1}=$ $b b^{-1}=1$. It follows that the order of $b a$ is smaller than n, Symmetrically , the order of $a b$ is smaller than the order of $b a$ so they must be equal.
3. Let G be a group such that every (non identity) element has order 2. Show that G is abelian.

Solution: For all $x \in G$, we have $x^{2}=1$ and hence $x=x^{-1}$. It follows that for all $a, b \in G$, $a b=(a b)^{-1}=b^{-1} a^{-1}=b a$ and hence G is Abelian.

Problem 2 (Permutations):
I. Let $\gamma \in S_{n}$ be an k-cycle. What are the $i \in \mathbb{Z}$ such that γ^{i} is a k-cycle.

Solution: Let $\gamma=\left(a_{0} a_{1} \ldots a_{k-1}\right)$ then $\gamma^{i}\left(a_{j}\right)=a_{i+j}$ (the indices are taken to be in $\mathbb{Z} / k \mathbb{Z})$. Let us prove that if γ^{i} is a k-cycle, then $\operatorname{gcd}(i, n)=1$. If γ^{i} is a k-cycle then it has order k in $\langle\gamma\rangle$ which has size k and hence $(k, i)=1$. Conversely, assume $\operatorname{gcd}(i, k)=1$, and for all $j \in \mathbb{Z} / k \mathbb{Z}$, let $b_{j}=a_{i j}$ (this is well defined because if $j_{2}=j_{1}+k d$, then $\left.a_{i j_{2}}=a_{i j_{1}+k i d}=a_{i j_{1}}\right)$. Then $\gamma^{i}\left(b_{j}\right)=b_{j+1}$ and if $x \notin\left\{a_{i}: i \in \mathbb{Z} / k \mathbb{Z}\right\}, \gamma(x)=x$ and hence $\gamma^{i}(x)$. To show that γ^{i} is a k-cycle, it suffices to show that the b_{j} are distinct. If $b_{j_{1}}=b_{j_{2}}$, then $a_{i j_{1}}=a_{i j_{2}}$ and hence $i j_{1}=i j_{2} \bmod k$, i.e. $k \mid i\left(j_{1}-j_{2}\right)$. As $(k, i)=1$, it follows that $k \mid\left(j_{1}-j_{2}\right)$ and hence $j_{1}=j_{2} \bmod k$. That concludes the proof.
2. Show that every element of S_{n} can be written as an arbitrary product of the elements (01) and ($01 \ldots n-1$) (we say that (01) and $(01 \ldots n-1)$ generate $\left.S_{n}\right)$.

Solution: Let us first prove the following very useful fact. Let $\gamma=\left(a_{0} a_{1} \ldots a_{k-1}\right)$ be a k cycle and $\sigma \in S_{n}$, then $\gamma_{\sigma}:=\sigma \circ \gamma \circ \sigma^{-} 1=\left(\sigma\left(a_{0}\right) \sigma\left(a_{1}\right) \ldots \sigma\left(a_{k-1}\right)\right)$. Indeed $\gamma_{\sigma}\left(\sigma\left(a_{i}\right)\right)=$ $\sigma \circ \gamma \circ \sigma^{-} 1\left(\sigma\left(a_{i}\right)\right)=\sigma \circ \gamma\left(a_{i}\right)=\sigma\left(a_{i+1}\right)$ and hence (because σ is a permutation, the $\sigma\left(a_{i}\right)$ are distinct), γ_{σ} is indeed the k-cycle sending $\sigma\left(a_{i}\right)$ to $\sigma\left(a_{i+1}\right)$.
Let $\tau=(01)$ and $\gamma=(01 \ldots n-1)$. By the previous paragraph, $\gamma^{i} \tau \gamma^{-i}=(i(i+1))$ and $(12) \tau(12)=(02)$ and in general $(i(i+1))(0 i)(i(i+1))=(0(i+1))$. Finally $(0 j)(0 i)(0 j)=(j i)$ (provided $i \neq j)$. Every transposition can, therefore, be written as a product of τ and γ and hence so does every element of S_{n}.
3. (Harder) Let $\tau=(0 i)$ for $0 \leqslant i<n$ and $\gamma=(01 \ldots n-1)$. Find a necessary and sufficient condition on i so that τ and γ generate S_{n}.

Solution: Let us prove that τ and γ generate S_{n} if and only if $\operatorname{gcd}(i, n)=1$. Let us first assume that $\operatorname{gcd}(i, n)=1$. Then i generates $\mathbb{Z} / n \mathbb{Z}$ and hence the $i j$ for $0 \leqslant j<n$ are all distinct. Let $\sigma \in \mathbb{J}_{n}$ be the permutation sending j to $i j$ and let $f: S_{n} \rightarrow S_{n}$ be the map $x \mapsto \sigma^{-1} x \sigma$. Then f is a group homomorphism : $f(x y)=\sigma^{-1} x y \sigma=\sigma^{-1} x \sigma \sigma^{-1} y \sigma=$ $f(x) f(y)$. Moreover f is injective as $f(x)=\sigma^{-1} x \sigma=1$ implies $x=\sigma \sigma^{-1}=1$ and hence f is a bijection (it is an injective function of a finite set into itself). So f is a group automorphism. Moreover $f(\tau)=\left(\sigma^{-} 1(0) \sigma^{-1}(i)\right)=(01)$ and $f\left(\gamma^{i}\right)(j)=\sigma^{-1} \gamma^{i} \sigma(j)=$ $\sigma^{-1}\left(\gamma^{i}(i j)\right)=\sigma^{-1}(i(j+1))=j+1$. It follows that $f\left(\gamma^{i}\right)=\gamma$. In the previous question we showed that $f(\tau)$ and $f\left(\gamma^{i}\right)$ generates S_{n}. Because f is an automorphism, it follows that γ^{i} and τ generate S_{n} and hence so do τ and γ.
The converse is more complicated. Let us assume that $\operatorname{gcd}(i, n)=d \neq 1$. The idea is to show that there is a property of γ and τ that is preserved under composition and which does not hold of all permutations. The property is the following. Let σ be either γ or τ. If $x=y \bmod d$, then $\sigma(x)=\sigma(y) \bmod d$. If $\sigma=\gamma$ this is obvious as $\gamma(x)=x+1$ and $d \mid x-y$ implies $d \mid(x+1)-(y+1)=x-y$. For $\sigma=\tau$ we can check all cases. If x and $y \notin\{0, i\}$, then $\tau(x)=x$ and $\tau(y)=y$ and that is obvious. If $x=0$ and $y=i$, then $d \mid x-y=i$ and $d \mid \sigma(x)-\sigma(y)=-i$. If $x=0$ and $y \neq i$ then if $d \mid x-y=-y$ we also have that $d \mid \sigma(x)-\sigma(y)=i-y$. The remaining cases are proved similarly.
Let us now prove that this property is preserved under composition. If σ_{1} and σ_{2} are such that if $d \mid x-y$ then $d \mid \sigma_{k}(x)-\sigma_{k}(y)$ for $k=1,2$, then if $d \mid x-y$, then $d \mid \sigma_{1}(x)-\sigma_{1}(y)$ and thus $d \mid \sigma_{2}\left(\sigma_{1}(x)\right)-\sigma_{2}\left(\sigma_{1}(y)\right)$. So if τ and γ generated S_{n}, it would follow that every element in S_{n} have this property. But $\sigma=(01)$ does not have this property as $d \mid i-0$ but d does not divide $\sigma(i)-\sigma(0)=i-1$ (as $d \neq 1$). Therefore γ and τ do not generate S_{n}.
4. Show that if Ω is an infinite set then S_{Ω} is infinite.

Solution: Because Ω is infinite, there are elements $a_{i} \in \Omega$ for all $i \in \mathbb{Z}_{\leqslant 0}$ such that $a_{i}=a_{j}$ if and only if $i=j$ (i.e. $\mathbb{Z}_{\leqslant 0}$ can be embedded in Ω). Then the transpositions ($a_{0} a_{i}$) for $i \in \mathbb{Z}_{>0}$ are all distinct elements of S_{Ω} and hence S_{Ω} is infinite.
5. (Harder) Assume that Ω is countable, show that S_{Ω} has cardinality continuum (i.e. is in bijection with 2^{Ω}).

Solution: We know that S_{Ω} (being a subset of Ω^{Ω}) has cardinality at most continuum. To show that it is exactly continuum, we have to show that 2^{Ω} can be injected into S_{Ω}. Because Ω is countable, let us assume that $\Omega=\mathbb{Z}$. For every $f \in 2^{\mathbb{Z}}$, let $\sigma_{f}(2 i)=2 i$ and $\sigma_{f}(2 i+1)=2 i+1$ if $f(i)=0$ and $\sigma_{f}(2 i)=2 i+1$ and $\sigma_{f}(2 i+1)=2 i$ otherwise. Then $\sigma_{f} \in S_{\Omega}$ and $\sigma_{f}=\sigma_{g}$ implies that $f=g$. It follows that f is an injection from 2^{Ω} into S_{Ω}.

Problem 3 :

Let G be a group whose cardinal is even.
I. Let $X=\left\{g \in G: g \neq g^{-1}\right\}$. Show that $|X|$ is even.

Solution: The general idea is that every element $g \in X$ comes with its inverse so there must be an even number of elements in X. Let us now do an actual proof (there are many ways to see this, this is but one approach).

Let $E \subseteq X$ be the equivalence relation $x E y$ if $x=y^{-} 1$ or $x=y$ (one can easily check that this is an equivalence relation). The classes of E have exactly two elements (because no element of X is its own inverse) and X is partitioned into $k E$-classes. If follows that $|X|=2 k$.
2. Show that there is a element of order 2 in G.

Solution: G is the disjoint union of X and $Y=\left\{x \in g: x^{-} 1=x\right\}$. Because $|G|$ and X are even and $|G|=|X|+|Y|$, it follows that $|Y|$ is even. But $1 \in Y$ so Y has to contain an element $x \neq 1$ such that $x=x^{-1}$, i.e. $x^{2}=1$.

Problem 4 :

Let (G, \cdot) and (H, \star) be to groups. We define $\left(g_{1}, h_{1}\right) \circ\left(g_{2}, h_{2}\right):=\left(g_{1} \cdot g_{2}, h_{1} \star h_{2}\right)$.
I. Show that $(G \times H, \circ)$ is a group.

Solution: First o is indeed a map from $(G \times H)^{2}$ to $G \times H$. Let us now check associativity. Pick any $g_{1}, g_{2}, g_{3} \in G$ and $h_{1}, h_{2}, h_{3} \in H$. We have:

$$
\begin{aligned}
\left(\left(g_{1}, h_{1}\right) \circ\left(g_{2}, h_{2}\right)\right) \circ\left(g_{3}, h_{3}\right) & =\left(g_{1} \cdot g_{2}, h_{1} \star h_{2}\right) \circ\left(g_{3}, h_{3}\right) \\
& =\left(\left(g_{1} \cdot g_{2}\right) \cdot g_{3},\left(h_{1} \star h_{2}\right) \star h_{3}\right) \\
& =\left(g_{1} \cdot\left(g_{2} \cdot g_{3}\right), h_{1} \star\left(h_{2} \star h_{3}\right)\right) \\
& =\left(g_{1}, h_{1}\right) \circ\left(g_{2} \cdot g_{3}, h_{2} \star h_{3}\right) \\
& =\left(g_{1}, h_{1}\right) \circ\left(\left(g_{2}, h_{2}\right) \circ\left(g_{3}, h_{3}\right)\right)
\end{aligned}
$$

Let us now show that $\left(1_{G}, 1_{H}\right) \in G \times H$ is the identity. Pick $g \in G$ and $h \in H$, then $(g, h) \circ\left(1_{G}, 1_{H}\right)=\left(g \cdot 1_{G}, h \star 1_{H}\right)=(g, h)=\left(1_{G} \circ g, 1_{H} \star h\right)=\left(1_{G}, 1_{H}\right) \circ(g, h)$. Finally, let $g \in G$ and $h \in H$ and let us show that $\left(g^{-1}, h^{-1}\right) \in G \times H$ is its inverse. We have $(g, h) \circ\left(g^{-1}, h^{-1}\right)=\left(g \cdot g^{-1}, h \star h^{-1}\right)=\left(1_{G}, 1_{H}\right)=\left(g^{-1} \cdot g, h^{-1} \star h\right)=\left(g^{-1}, h^{-1}\right) \circ(g, h)$.
2. Show that $G \times H$ is Abelian if and only if G and H are.

Solution: Assume $G \times H$ is Abelian and pick $g_{1}, g_{2} \in G$. Then $\left(g_{1} \cdot g_{2}, 1_{H}\right)=\left(g_{1}, 1_{H}\right) \circ$ $\left(g_{2}, 1_{H}\right)=\left(g_{2}, 1_{H}\right) \circ\left(g_{1}, 1_{H}\right)=\left(g_{2} \cdot g_{1}, 1_{H}\right)$.lt follows that $g_{1} \cdot g_{2}=g_{2} \cdot g_{1}$ and hence G is Abelian. By a symmetric argument, H is Abelian.
Let us now assume that G and H are Abelian and pick $g_{1}, g_{2} \in G$ and $h_{1}, h_{2} \in H$. Then $\left(g_{1}, h_{1}\right) \circ\left(g_{2}, h_{2}\right)=\left(g_{1} \cdot g_{2}, h_{1} \cdot h_{2}\right)=\left(g_{2} \cdot g_{1}, h_{2} \cdot h_{1}\right)=\left(g_{2}, h_{2}\right) \circ\left(g_{1}, h_{1}\right)$. So $G \times H$ is Abelian.
3. (Harder) Let $\left(G_{i}\right)_{i \in I}$ be a collection of groups. Show that $\prod_{i \in I} G_{i}$ with the coordinatewise operation, i.e. $\left(g_{i}\right)_{i \in I} \cdot\left(h_{i}\right)_{i \in I}=\left(g_{i} \cdot h_{i}\right)_{i \in I}$, is a group.

Solution: First of all, if g_{i} and $h_{i} \in G_{i}$ for all i, then $\left(g_{i} \cdot h_{i}\right)_{i \in I} \in \prod_{i} G_{i}$ so the coordinatewise operation is indeed a binary operation. Let us now prove it is associative. Pick any g_{i}, h_{i} and $t_{i} \in G_{i}$ for all i :

$$
\begin{aligned}
\left(\left(g_{i}\right)_{i \in I} \cdot\left(h_{i}\right)_{i \in I}\right) \cdot\left(t_{i}\right)_{i \in I} & =\left(g_{i} \cdot h_{i}\right)_{i \in I} \cdot\left(t_{i}\right)_{i \in I} \\
& =\left(\left(g_{i} \cdot h_{i}\right) \cdot t_{i}\right)_{i \in I} \\
& =\left(g_{i} \cdot\left(h_{i} \cdot t_{i}\right)\right)_{i \in I} \\
& =\left(g_{i}\right)_{i \in I} \cdot\left(h_{i} \cdot t_{i}\right)_{i \in I} \\
& =\left(g_{i}\right)_{i \in I} \cdot\left(\left(h_{i}\right)_{i \in I} \cdot\left(t_{i}\right)_{i \in I}\right)
\end{aligned}
$$

Let us now show that $\left(1_{G_{i}}\right)_{i \in I}$ is the identity. Pick $g_{i} \in G_{i}$ for all i, then $\left(g_{i}\right)_{i \in I}$. $\left(1_{G_{i}}\right)_{i \in I}=\left(g_{i} \cdot 1_{G_{i}}\right)_{i \in I}=\left(g_{i}\right)_{i \in I}=\left(1_{G_{i}} \cdot g_{i}\right)_{i \in I}=\left(1_{G_{i}}\right)_{i \in I} \cdot\left(g_{i}\right)_{i \in I}$. Finally, pick $g_{i} \in G_{i}$, for all i, and let us show that $\left(g_{i}^{-1}\right)_{i \in I}$ is its inverse. We have $\left(g_{i}\right)_{i \in I} \circ\left(g_{i}^{-1}\right)_{i \in I}=\left(g_{i} \cdot g_{i}^{-1}\right)_{i \in I}=$ $\left(1_{G_{i}}\right)_{i \in I}=\left(g_{i}^{-1} \cdot g_{i}\right)_{i \in I}=\left(g_{i}^{-1}\right)_{i \in I} \circ\left(g_{i}\right)_{i \in I}$.

