Homework 2

Due September 11th

The questions indicated as Harder will not be taken in account when grading.

Problem 1 (Order) :

- Find the order of every element in (Z/18Z, +) and of every element of ((Z/18Z)^{*}, ·). (You should start by giving a list of the elements of Z/18Z that have a multiplicative inverse; there are six of them).
- 2. Let G be a group, $a, b \in G$. Show that the order of $a \cdot b$ is equal to the order of $b \cdot a$.
- 3. Let G be a group such that every (non identity) element has order 2. Show that G is abelian.

Problem 2 (Permutations) :

- 1. Let $\gamma \in S_n$ be an k-cycle. What are the $i \in \mathbb{Z}$ such that γ^i is a k-cycle.
- 2. Show that every element of S_n can be written as an arbitrary product of the elements (01) and $(01 \dots n-1)$ (we say that (01) and $(01 \dots n-1)$ generate S_n).
- 3. (Harder) Let $\tau = (0i)$ for $0 \le i < n$ and $\gamma = (01 \dots n 1)$. Find a necessary and sufficient condition on i so that τ and γ generate S_n .
- 4. Show that if Ω is an infinite set then S_{Ω} is infinite.
- 5. (Harder) Assume that Ω is countable, show that S_{Ω} has cardinality continuum (i.e. is in bijection with 2^{Ω}).

Problem 3:

Let G be a group whose cardinal is even.

- 1. Let $X = \{g \in G : g \neq g^{-1}\}$. Show that |X| is even.
- 2. Show that there is a element of order 2 in G.

Problem 4:

Let (G, \cdot) and (H, \star) be to groups. We define $(g_1, h_1) \circ (g_2, h_2) \coloneqq (g_1 \cdot g_2, h_1 \star h_2)$.

- 1. Show that $(G \times H, \circ)$ is a group.
- 2. Show that $G \times H$ is Abelian if and only if G and H are.
- 3. (Harder) Let $(G_i)_{i \in I}$ be a collection of groups. Show that $\prod_{i \in I} G_i$ with the coordinatewise operation, i.e. $(g_i)_{i \in I} \cdot (h_i)_{i \in I} = (g_i \cdot h_i)_{i \in I}$, is a group.