Homework 2

Due September 11th

The questions indicated as Harder will not be taken in account when grading.
Problem 1 (Order) :

1. Find the order of every element in $(\mathbb{Z} / 18 \mathbb{Z},+)$ and of every element of $\left((\mathbb{Z} / 18 \mathbb{Z})^{\star}, \cdot\right)$. (You should start by giving a list of the elements of $\mathbb{Z} / 18 \mathbb{Z}$ that have a multiplicative inverse; there are six of them).
2. Let G be a group, $a, b \in G$. Show that the order of $a \cdot b$ is equal to the order of $b \cdot a$.
3. Let G be a group such that every (non identity) element has order 2 . Show that G is abelian.

Problem 2 (Permutations) :

1. Let $\gamma \in S_{n}$ be an k-cycle. What are the $i \in \mathbb{Z}$ such that γ^{i} is a k-cycle.
2. Show that every element of S_{n} can be written as an arbitrary product of the elements (01) and ($01 \ldots n-1$) (we say that (01) and ($01 \ldots n-1$) generate S_{n}).
3. (Harder) Let $\tau=(0 i)$ for $0 \leqslant i<n$ and $\gamma=(01 \ldots n-1)$. Find a necessary and sufficient condition on i so that τ and γ generate S_{n}.
4. Show that if Ω is an infinite set then S_{Ω} is infinite.
5. (Harder) Assume that Ω is countable, show that S_{Ω} has cardinality continuum (i.e. is in bijection with 2^{Ω}).

Problem 3 :

Let G be a group whose cardinal is even.

1. Let $X=\left\{g \in G: g \neq g^{-1}\right\}$. Show that $|X|$ is even.
2. Show that there is a element of order 2 in G.

Problem 4:

Let (G, \cdot) and (H, \star) be to groups. We define $\left(g_{1}, h_{1}\right) \circ\left(g_{2}, h_{2}\right):=\left(g_{1} \cdot g_{2}, h_{1} \star h_{2}\right)$.

1. Show that $(G \times H, \circ)$ is a group.
2. Show that $G \times H$ is Abelian if and only if G and H are.
3. (Harder) Let $\left(G_{i}\right)_{i \in I}$ be a collection of groups. Show that $\prod_{i \in I} G_{i}$ with the coordinatewise operation, i.e. $\left(g_{i}\right)_{i \in I} \cdot\left(h_{i}\right)_{i \in I}=\left(g_{i} \cdot h_{i}\right)_{i \in I}$, is a group.
