Solutions to homework 3

Due September 18th

Problem 1:

Let G be a finite group and $n=|G|$.

1. For any $a \in G$, let $f_{a}(x)=a \cdot x$. Show that $a \mapsto f_{a}$ is an injective group homomorphism from G into S_{G}.

Solution: We have first to check that $f_{a}: G \rightarrow G$ is a bijection. Because G is finite, it suffices to check it is an injection (but this map will also be a bijection when G is not finite). Assume $a \cdot x=a \cdot y$, then $x=y$ and hence f_{a} is injective.
So $\varphi: a \mapsto f_{a}$ is a map from G into S_{G}. We have to check that it is an injective homomorphism. Let $a, b \in G$ and $x \in G$, then $f_{a b}(x)=a b x=f_{a} \circ f_{b}(x)$. So the maps $f_{a b}$ and $f_{a} \circ f_{b}(x)$ are equal and φ is a homomorphism.
Let us now show it is injective. Assume that $f_{a}=$ id, then $f_{a}(1)=a \cdot 1=a=1$, so $\operatorname{ker}(\varphi)=\{1\}$ and φ is injective.
2. Show that every finite group is isomorphic to a subgroup of $S_{\mathbb{Z}_{>0}}$.

Solution: We have just shown that G is isomorphic to a subgroup of S_{G} which is itself isomorphic to $S_{|G|}$. To conclude, is suffices to show that S_{n} is isomorphic to a subgroup of $S_{\mathbb{N}}$ (and take $n=|G|$). Let $\theta: S_{n} \rightarrow S_{\mathbb{N}}$ be the map that send $\sigma \in S_{n}$ to the bijection of $S_{\mathbb{N}}$ that fixes every $x \geqslant n$ and acts as σ on $\{0, \ldots, n-1\}$. Let σ and $\tau \in S_{n}$ and $x \in \mathbb{N}$. If $x \geqslant n, \theta(\sigma \circ \tau)(x)=x=\theta(\sigma) \circ \theta(\tau)(x)$ and if $x<n$, $\theta(\sigma \circ \tau)(x)=\sigma(\tau(x))=\theta(\sigma) \circ \theta(\tau)(x)$, so θ is an homomorphism. The kernel of θ is easily seen to be $\{\mathrm{id}\}$ and hence θ is a monomorphism.

Problem 2 :

Let G be a finite group and $\sigma \in \operatorname{Aut}(G)$. Assume that for all $x \in G, \sigma(x)=x$ implies $x=1$ and that $\sigma^{2}=1$ (in this equation, the product and identity are considered in the group $\operatorname{Aut}(G))$.

1. Show that the map $f: G \rightarrow G$ defined by $f(x)=x^{-1} \sigma(x)$ is a bijection.

Solution: Let us first show that f is injective. If $x, y \in G$ are such that $x^{-1} \sigma(x)=$ $f(x)=f(y)=y^{-1} \sigma(y)$, then $y x^{-1}=\sigma(y) \sigma(x)^{-1}=\sigma\left(y x^{-1}\right)$. By hypothesis, it follows that $y x^{-1}=1$, i.e. $x=y$. Moreover, since G is finite, any injection of G into itself is a surjection, so f is a bijection.
2. Show that for all $x \in G, \sigma(x)=x^{-1}$.

Solution: Pick $y \in G$. By the previous question, $y=f(x)=x^{-1} \sigma(x)$ for some $x \in G$. So $\sigma(y)=\sigma\left(x^{-1} \sigma(x)\right)=\sigma(x)^{-1} \sigma^{2}(x)=\sigma(x)^{-1} x=\left(x^{-1} \sigma(x)\right)^{-1}=y^{-1}$.
3. Show that G is Abelian.

Solution: Since σ is a group automorphism and $\sigma(x)=x^{-1}$, for all $x, y \in G$, we have $x y=\sigma\left(x^{-1}\right) \sigma\left(y^{-1}\right)=\sigma\left(x^{-1} y^{-1}\right)=\left(x^{-1} y^{-1}\right)^{-1}=y x$.

Problem 3 :

If G is an Abelian group, let $\operatorname{tor}(G):=\{x \in G:|x|<\infty\}$. It is called the torsion group of G. For all $n \in \mathbb{Z}_{>0}$, let $Z_{n}:=\left\{e^{\frac{2 i k \pi}{n}}: k \in \mathbb{Z}\right\} \subseteq \mathbb{C}$. Let $Z:=\cup_{n} Z_{n}$.

1. Show that $\operatorname{tor}(G) \leqslant G$.

Solution: Pick any $a \in \operatorname{tor}(G)$. Then $\left|a^{-1}\right|=|a|=n<\infty$ so $a \in \operatorname{tor}(G)$. Let us now also pick $c \in \operatorname{tor}(G)$. Let $m:=|c|$, then, because G is Abelian, $(a c)^{m n}=a^{m n} c^{m n}=1$, so $|a c|<\infty$.
2. Show that $\operatorname{tor}\left(\mathbb{C}^{\star}\right)=Z$.

Solution: Firstly, $\left(e^{\frac{2 i k \pi}{n}}\right)^{n}=\left(e^{2 i \pi}\right)^{k}=1$, so $Z \subseteq \operatorname{tor}\left(\mathbb{C}^{\star}\right)$. Conversely, let $\alpha=$ $r e^{2 i \theta \pi} \in \mathbb{C}$, where $r \in \mathbb{R}_{>0}$ and $\alpha \in \mathbb{R}$, be such that $\alpha^{n}=1$ for some n . Then $r^{n}=1$ so $r=1$ and $n \theta=k \in \mathbb{Z}$ so $\theta=\frac{k}{n}$. It follows that $\alpha=e^{\frac{2 i k \pi}{n}} \in Z$.
3. Pick some k dividing n. Show that the only subgroup of Z_{n} of order k is Z_{k}.

Solution: Note that $Z_{n}=\left\{\left(e^{\frac{2 i \pi}{n}}\right)^{k}: k \in \mathbb{Z}\right\}=\left\langle e^{\frac{2 i \pi}{n}}\right\rangle$ is cyclic. Moreover $\left(e^{\frac{2 i \pi}{n}}\right)^{k}=1$ if and only if $n \mid k$ so $\left|e^{\frac{2 i \pi}{n}}\right|=n=\left|Z_{n}\right|$. By the results proved in class about cyclic groups, there is a unique subgroup of order $k \mid n$ in Z_{n}. This group is $\left\langle\left(e^{\left.\left.\frac{2 i \pi}{n}\right)^{\frac{n}{k}}\right\rangle=}\right.\right.$ $\left\langle\left(e^{\frac{2 i \pi}{k}}\right)\right\rangle=Z_{k}$.
But since the problem was asked before we knew what cyclic groups were, let us also prove it by hand. Let us first prove that if $k \mid n$, then $Z_{k} \leqslant Z_{n}$. Indeed, if $n=k l$, then for all $m \in \mathbb{Z}, e^{\frac{2 i m \pi}{k}}=e^{\frac{2 i m l \pi}{n}} \in Z_{n}$. Now, let $H \leqslant Z_{n}$ have order k. Assume $x:=e^{\frac{2 i l \pi}{n}} \in H$ and let $d=\operatorname{gcd}(l, n)$. There exists $u, v, n_{0} \in \mathbb{Z}$ such that $u l+v n=d$ and $n=d n_{0}$. Then $x^{u}=e^{\frac{2 i u l \pi}{n}}=e^{\frac{2 i(d-v n) \pi}{n}}=e^{\frac{2 i d \pi}{n}} \cdot e^{2 i v \pi}=e^{\frac{2 i \pi}{n_{0}}} \in H$.
Let $l_{0} \in \mathbb{Z}_{>0}$ be minimal such that $e^{\frac{2 i l_{0} \pi}{n}} \in H$ and l_{0} divides n-this minimum exists because $e^{\frac{2 i n \pi}{n}}=1 \in H$. Then for all $x:=e^{\frac{2 i l \pi}{n}} \in H$, if $l=l_{0} q+r$ with $q, r \in \mathbb{Z}$ and $0 \leqslant r<l_{0}$, then $x \cdot\left(e^{\frac{2 i l_{0} \pi}{n}}\right)^{-q}=e^{\frac{2 i r \pi}{n}} \in H$. By the above computation, if $r \neq 0$, and $d=\operatorname{gcd}(r, n), e^{\frac{2 i d \pi}{n}} \in H$, but $d \leqslant r<l_{0}$, a contradiction. It follows that $r=0$ and $H=\left\{\left(e^{\frac{2 i l_{0} \pi}{n}}\right)^{q}: q \in \mathbb{Z}\right\}=Z_{\frac{n}{l_{0}}}$. Since $k=|H|=\left|Z_{\frac{n}{l_{0}}}\right|=\frac{n}{l_{0}}$, we are done.
4. Show that $Z_{n} \leqslant Z_{m}$ if and only if $n \mid m$.

Solution: The statement that if $n \mid m$ then $Z_{n} \leqslant Z_{m}$ is proved in the previous question. Let us prove the converse. Assume $Z_{n} \leqslant Z_{m}$, then $e^{\frac{2 i \pi}{n}} \in Z_{m}$ so there exists $k \in \mathbb{Z}$ such that $e^{\frac{2 i \pi}{n}}=e^{\frac{2 i k \pi}{m}}$. It follows that $e^{2 i \pi\left(\frac{1}{n}-\frac{k}{m}\right)}=1$ and hence $\frac{1}{n}-\frac{k}{m}=$ $l \in \mathbb{Z}$. Mulitplying by $n m$ we obtain that $m=n(k+l m)$, i.e. $n \mid m$.
Since we know that $\left|Z_{n}\right|=n$, we can also conclude by Lagrange (when we'll know Lagrange).
5. Show that there does not exists $a_{1}, \ldots, a_{k} \in Z$ such that $Z=\left\langle a_{1}, \ldots, a_{k}\right\rangle$

Solution: Let us prove, first, that $\left\langle Z_{n} \cup Z_{m}\right\rangle=Z_{\operatorname{lcm}(m, n)}$. By Question 4, Z_{n}, $Z_{m} \leqslant Z_{\operatorname{lcm}(m, n)}$ so $\left\langle Z_{n} \cup Z_{m}\right\rangle \leqslant Z_{\operatorname{lcm}(m, n)}$. Let $d=\operatorname{gcd}(m, n)$. There exists $u, v \in \mathbb{Z}$ such that $u n+v m=d$. Then $\left(e^{\frac{2 i \pi}{n}}\right)^{v}\left(e^{\frac{2 i \pi}{m}}\right)^{u}=e^{\frac{2 i(v m+u n) \pi}{m n}}=e^{\frac{2 i d \pi}{n m}}=e^{\frac{2 i \pi}{1 c m(m, n)}}$. It follows that $Z_{\operatorname{lcm}(m, n)}=\left\langle e^{\frac{2 i \pi}{\operatorname{lcm}(m, n)}}\right\rangle \leqslant\left\langle Z_{n} \cup Z_{m}\right\rangle$.
Let us now prove by induction on k that $\left\langle a_{1}, \ldots, a_{k}\right\rangle=Z_{n}$ for some $n \in \mathbb{Z}_{>0}$. If $k=0$, let $a_{1}=e^{\frac{2 i l \pi}{n}}$ where $\operatorname{gcd}(l, n)=1$. There exists $u, v \in \mathbb{Z}$ such that $u l+v n=1$.

We have $a_{1}^{u}=e^{\frac{2 i u l \pi}{n}}=e^{\frac{2 i(1-v n) \pi}{n}}=e^{\frac{2 i \pi}{n}}$. So $e^{\frac{2 i \pi}{n}} \in\left\langle a_{1}\right\rangle$. Since $a_{1}=\left(e^{\frac{2 i \pi}{n}}\right)^{l}$, we also have $a_{1} \in\left\langle e^{\frac{2 i \pi}{n}}\right\rangle=Z_{n}$ so $\left\langle a_{i}\right\rangle=Z_{n}$.
Let us now this holds for k and pick $a_{1}, \ldots, a_{k+1} \in Z$. By induction, we find $n \in \mathbb{Z}_{>0}$ such that $\left\langle a_{1}, \ldots, a_{k}\right\rangle=Z_{n}$. By the case $k=1$ case we also find $m \in \mathbb{Z}$ such that $\left\langle a_{k+1}\right\rangle=Z_{m}$. It is easy to check that $\left\langle a_{1}, \ldots, a_{k+1}\right\rangle=\left\langle Z_{n} \cup Z_{m}\right\rangle=Z_{\operatorname{lcm}(m, n)}$. Indeed, any group containing $\left\{a_{i}: 0<i \leqslant k+1\right\}$ contains $\left\{a_{i}: 0<i \leqslant k\right\}$ so it contains $\left\langle a_{1}, \ldots, a_{k}\right\rangle=Z_{n}$. It also contains $\left\langle a_{k+1}\right\rangle=Z_{m}$ so it contains $\left\langle Z_{n} \cup Z_{m}\right\rangle$. Conversely, any group containing $Z_{n} \cup Z_{m}$ contains $\left\{a_{i}: 0<i \leqslant k+1\right\}$ and hence $\left\langle a_{1}, \ldots, a_{k+1}\right\rangle$.
So we have $\left\langle a_{1}, \ldots, a_{k+1}\right\rangle=Z_{m}$ for some m. To conclude it suffices to show that $Z_{m} \subset Z$. But $e^{\frac{2 i \pi}{m+1}} \in Z \backslash Z_{m}$. Otherwise we would have $e^{\frac{2 i \pi}{m+1}}=e^{\frac{2 i k \pi}{m}}$ for some $k \in \mathbb{Z}$. That would imply that $\frac{1}{m+1}-\frac{k}{m}=l \in \mathbb{Z}$ and hence $m=(l m+k)(m+1)$. It would follow that $m+1 \mid m$, a obvious contradiction since $m>0$.

There is in fact a faster way of solving that question. The group Z is Abelian so $\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\prod_{i} a_{i}^{k_{i}}: k_{i} \in \mathbb{Z}\right\}$. Since every a_{i} has finite order, we have, in fact, $\left\langle a_{1}, \ldots, a_{k}\right\rangle=\left\{\prod_{i} a_{i}^{k_{i}}: 0 \leqslant k_{i}<\left|a_{i}\right|\right\}$ and so $\left|\left\langle a_{1}, \ldots, a_{k}\right\rangle\right| \leqslant \Pi_{i}\left|a_{i}\right|<\infty$. But Z is infinite (indeed, by an argument similar to the one above, all the $e^{\frac{2 i \pi}{p}}$, for p prime, are distinct). So we cannot have $Z=\left\langle a_{1}, \ldots, a_{k}\right\rangle$.

