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Problem 1 :
Let G be a finite group and n = ∣G∣.

1. For any a ∈ G, let fa(x) = a ⋅ x. Show that a ↦ fa is an injective group homomor-
phism from G into SG.

Solution:We have first to check that fa ∶ G→ G is a bijection. Because G is finite,
it suffices to check it is an injection (but this map will also be a bijection when G
is not finite). Assume a ⋅ x = a ⋅ y, then x = y and hence fa is injective.

So ϕ ∶ a ↦ fa is a map from G into SG. We have to check that it is an injective
homomorphism. Let a, b ∈ G and x ∈ G, then fab(x) = abx = fa ○ fb(x). So the
maps fab and fa ○ fb(x) are equal and ϕ is a homomorphism.

Let us now show it is injective. Assume that fa = id, then fa(1) = a ⋅ 1 = a = 1, so
ker(ϕ) = {1} and ϕ is injective.

2. Show that every finite group is isomorphic to a subgroup of SZ>0 .

Solution:We have just shown that G is isomorphic to a subgroup of SG which is
itself isomorphic to S∣G∣. To conclude, is suffices to show that Sn is isomorphic to
a subgroup of SN (and take n = ∣G∣). Let θ ∶ Sn → SN be the map that send σ ∈ Sn
to the bijection of SN that fixes every x ⩾ n and acts as σ on {0, . . . , n − 1}. Let
σ and τ ∈ Sn and x ∈ N. If x ⩾ n, θ(σ ○ τ)(x) = x = θ(σ) ○ θ(τ)(x) and if x < n,
θ(σ ○ τ)(x) = σ(τ(x)) = θ(σ) ○ θ(τ)(x), so θ is an homomorphism. The kernel of θ
is easily seen to be {id} and hence θ is a monomorphism.

Problem 2 :
Let G be a finite group and σ ∈ Aut(G). Assume that for all x ∈ G, σ(x) = x implies
x = 1 and that σ2 = 1 (in this equation, the product and identity are considered in the
group Aut(G)).

1. Show that the map f ∶ G→ G defined by f(x) = x−1σ(x) is a bijection.

Solution: Let us first show that f is injective. If x, y ∈ G are such that x−1σ(x) =
f(x) = f(y) = y−1σ(y), then yx−1 = σ(y)σ(x)−1 = σ(yx−1). By hypothesis, it
follows that yx−1 = 1, i.e. x = y. Moreover, since G is finite, any injection of G into
itself is a surjection, so f is a bijection.

2. Show that for all x ∈ G, σ(x) = x−1.

Solution:Pick y ∈ G. By the previous question, y = f(x) = x−1σ(x) for some
x ∈ G. So σ(y) = σ(x−1σ(x)) = σ(x)−1σ2(x) = σ(x)−1x = (x−1σ(x))−1 = y−1.

3. Show that G is Abelian.

Solution: Since σ is a group automorphism and σ(x) = x−1, for all x, y ∈ G, we
have xy = σ(x−1)σ(y−1) = σ(x−1y−1) = (x−1y−1)−1 = yx.
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Problem 3 :
If G is an Abelian group, let tor(G) ∶= {x ∈ G ∶ ∣x∣ <∞}. It is called the torsion group of
G. For all n ∈ Z>0, let Zn ∶= {e

2ikπ
n ∶ k ∈ Z} ⊆ C. Let Z ∶= ⋃nZn.

1. Show that tor(G) ⩽ G.

Solution:Pick any a ∈ tor(G). Then ∣a−1∣ = ∣a∣ = n <∞ so a ∈ tor(G). Let us now
also pick c ∈ tor(G). Let m ∶= ∣c∣, then, because G is Abelian, (ac)mn = amncmn = 1,
so ∣ac∣ <∞.

2. Show that tor(C⋆) = Z.

Solution: Firstly, (e 2ikπ
n )n = (e2iπ)k = 1, so Z ⊆ tor(C⋆). Conversely, let α =

re2iθπ ∈ C, where r ∈ R>0 and α ∈ R, be such that αn = 1 for some n. Then rn = 1

so r = 1 and nθ = k ∈ Z so θ = k
n . It follows that α = e 2ikπ

n ∈ Z.

3. Pick some k dividing n. Show that the only subgroup of Zn of order k is Zk.

Solution:Note that Zn = {(e
2iπ
n )k ∶ k ∈ Z} = ⟨e 2iπ

n ⟩ is cyclic. Moreover (e 2iπ
n )k = 1

if and only if n∣k so ∣e 2iπ
n ∣ = n = ∣Zn∣. By the results proved in class about cyclic

groups, there is a unique subgroup of order k∣n in Zn. This group is ⟨(e 2iπ
n )nk ⟩ =

⟨(e 2iπ
k )⟩ = Zk.

But since the problem was asked before we knew what cyclic groups were, let us
also prove it by hand. Let us first prove that if k∣n, then Zk ⩽ Zn. Indeed, if n = kl,
then for all m ∈ Z, e

2imπ
k = e 2imlπ

n ∈ Zn. Now, let H ⩽ Zn have order k. Assume
x ∶= e 2ilπ

n ∈ H and let d = gcd(l, n). There exists u, v, n0 ∈ Z such that ul + vn = d
and n = dn0. Then xu = e

2iulπ
n = e

2i(d−vn)π
n = e 2idπ

n ⋅ e2ivπ = e
2iπ
n0 ∈H.

Let l0 ∈ Z>0 be minimal such that e
2il0π

n ∈H and l0 divides n—this minimum exists
because e

2inπ
n = 1 ∈ H. Then for all x ∶= e 2ilπ

n ∈ H, if l = l0q + r with q, r ∈ Z and
0 ⩽ r < l0, then x ⋅ (e

2il0π

n )−q = e 2irπ
n ∈ H. By the above computation, if r ≠ 0, and

d = gcd(r, n), e 2idπ
n ∈ H, but d ⩽ r < l0, a contradiction. It follows that r = 0 and

H = {(e
2il0π

n )q ∶ q ∈ Z} = Z n
l0
. Since k = ∣H ∣ = ∣Z n

l0
∣ = n

l0
, we are done.

4. Show that Zn ⩽ Zm if and only if n∣m.

Solution:The statement that if n∣m then Zn ⩽ Zm is proved in the previous
question. Let us prove the converse. Assume Zn ⩽ Zm, then e

2iπ
n ∈ Zm so there

exists k ∈ Z such that e
2iπ
n = e 2ikπ

m . It follows that e2iπ(
1
n
−
k
m
) = 1 and hence 1

n −
k
m =

l ∈ Z. Mulitplying by nm we obtain that m = n(k + lm), i.e. n∣m.

Since we know that ∣Zn∣ = n, we can also conclude by Lagrange (when we’ll know
Lagrange).

5. Show that there does not exists a1, . . . , ak ∈ Z such that Z = ⟨a1, . . . , ak⟩

Solution: Let us prove, first, that ⟨Zn ∪ Zm⟩ = Zlcm(m,n). By Question 4, Zn,
Zm ⩽ Zlcm(m,n) so ⟨Zn ∪Zm⟩ ⩽ Zlcm(m,n). Let d = gcd(m,n). There exists u, v ∈ Z
such that un + vm = d. Then (e 2iπ

n )v(e 2iπ
m )u = e

2i(vm+un)π
mn = e 2idπ

nm = e
2iπ

lcm(m,n) . It
follows that Zlcm(m,n) = ⟨e

2iπ
lcm(m,n) ⟩ ⩽ ⟨Zn ∪Zm⟩.

Let us now prove by induction on k that ⟨a1, . . . , ak⟩ = Zn for some n ∈ Z>0. If
k = 0, let a1 = e

2ilπ
n where gcd(l, n) = 1. There exists u, v ∈ Z such that ul + vn = 1.
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We have au1 = e 2iulπ
n = e

2i(1−vn)π
n = e 2iπ

n . So e
2iπ
n ∈ ⟨a1⟩. Since a1 = (e

2iπ
n )l, we also

have a1 ∈ ⟨e
2iπ
n ⟩ = Zn so ⟨ai⟩ = Zn.

Let us now this holds for k and pick a1, . . . , ak+1 ∈ Z. By induction, we find n ∈ Z>0
such that ⟨a1, . . . , ak⟩ = Zn. By the case k = 1 case we also find m ∈ Z such
that ⟨ak+1⟩ = Zm. It is easy to check that ⟨a1, . . . , ak+1⟩ = ⟨Zn ∪ Zm⟩ = Zlcm(m,n).
Indeed, any group containing {ai ∶ 0 < i ⩽ k + 1} contains {ai ∶ 0 < i ⩽ k} so it
contains ⟨a1, . . . , ak⟩ = Zn. It also contains ⟨ak+1⟩ = Zm so it contains ⟨Zn ∪ Zm⟩.
Conversely, any group containing Zn ∪ Zm contains {ai ∶ 0 < i ⩽ k + 1} and hence
⟨a1, . . . , ak+1⟩.
So we have ⟨a1, . . . , ak+1⟩ = Zm for some m. To conclude it suffices to show that
Zm ⊂ Z. But e 2iπ

m+1 ∈ Z ∖Zm. Otherwise we would have e
2iπ
m+1 = e 2ikπ

m for some k ∈ Z.
That would imply that 1

m+1 −
k
m = l ∈ Z and hence m = (lm + k)(m + 1). It would

follow that m + 1∣m, a obvious contradiction since m > 0.

There is in fact a faster way of solving that question. The group Z is Abelian so
⟨a1, . . . , ak⟩ = {∏i a

ki
i ∶ ki ∈ Z}. Since every ai has finite order, we have, in fact,

⟨a1, . . . , ak⟩ = {∏i a
ki
i ∶ 0 ⩽ ki < ∣ai∣} and so ∣⟨a1, . . . , ak⟩∣ ⩽ ∏i ∣ai∣ < ∞. But Z is

infinite (indeed, by an argument similar to the one above, all the e
2iπ
p , for p prime,

are distinct). So we cannot have Z = ⟨a1, . . . , ak⟩.
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