Silvain Rideau 1091 Evans

Homework 3

Due September 18th

Problem 1:

Let G be a finite group.

- I. For any $a \in G$, let $f_a(x) = a \cdot x$. Show that $a \mapsto f_a$ is an injective group homomorphism from *G* into S_G .
- 2. Show that every finite group is isomorphic to a subgroup of $S_{\mathbb{Z}_{>0}}$.

Problem 2:

Let *G* be a finite group and $\sigma \in Aut(G)$. Assume that for all $x \in G$, $\sigma(x) = x$ implies x = 1 and that $\sigma^2 = 1$ (in this equation, the product and identity are considered in the group Aut(G)).

- I. Show that the map $f: G \to G$ defined by $f(x) = x^{-1}\sigma(x)$ is a bijection.
- 2. Show that for all $x \in G$, $\sigma(x) = x^{-1}$.
- 3. Show that G is Abelian.

Problem 3:

If G is an Abelian group, let $tor(G) := \{x \in G : |x| < \infty\}$. It is called the torsion group of G. For all $n \in \mathbb{Z}_{>0}$, let $Z_n := \{e^{\frac{2ik\pi}{n}} : k \in \mathbb{Z}\} \subseteq \mathbb{C}$. Let $Z := \bigcup_n Z_n$.

- I. Show that $tor(G) \leq G$.
- 2. Show that $tor(\mathbb{C}^*) = Z$.
- 3. Pick some k dividing n. Show that the unique subgroup of Z_n of order k is Z_k .
- 4. Show that $Z_n \leq Z_m$ if and only if n|m.
- 5. Show that there does not exists $a_1, \ldots, a_k \in Z$ such that $Z = (a_1, \ldots, a_k)$