Solutions to homework 4

Due October 2nd

Problem 1:

Let $G \leqslant \mathbb{R}$.

1. Assume that for all $b \in \mathbb{R}_{>0}$, there exists $g \in G$ such that $0<g<b$. Show that for all $x, y \in \mathbb{R}$ such that $x<y$, there is $g \in G$ such that $x<g<y$.

Solution: By hypothesis, there exists $a \in G$ such that $0<a<y-x$. Moreover, the sequence $(n \cdot a)_{n \in \mathbb{Z} \leqslant 0}$ goes to infinity, so there exists $n \in \mathbb{Z}_{\leqslant 0}$ such that $n \cdot a \leqslant x<$ $(n+1) \cdot a$. But because $a<y-x$, it follows that $(n+1) \cdot a<x+(y-x)=y$ and $(n+1) \cdot a \in G$.
2. (Harder) If $a:=\inf \{g \in G: g>0\} \neq 0$, show that $G=a \mathbb{Z}$.

Solution: It follows from the hypothesis that there exists $b \in \mathbb{R}_{>0}$ such that for all $c \in G_{>0}, b<c$. In particular if $d<c \in G$ then $c-d \in G_{>0}$ and hence $b<c-d$. It follows that elements of G are at least b apart. Let $c \in G_{>0}$ be such that $c-a<b$ (this exists because $a=\inf \{g \in G: g>0\}$). If $c \neq a$, there exists $d \in G_{>0}$ such that $a \leqslant d<c$, but then $c-d \leqslant c-a<b$, a contradiction. It follows that $a \in G$. Now pick any $c \in G$, there exists $n \in \mathbb{Z}$ such that $n \cdot a \leqslant c<(n+1) \cdot a$. It follows that $0 \leqslant c-n \cdot a<a$ and hence, by minimality of $a, c-n \cdot a=0$ and hence $c \in a \cdot \mathbb{Z}$.

Problem 2 :

1. Show that $x \mapsto e^{2 i \pi x}$ is group homomorphism from \mathbb{R} to \mathbb{C}^{\star}.

Solution: We have $e^{2 i \pi(x+y)}=e^{2 i \pi x+2 i \pi y}=e^{2 i \pi x} \cdot e^{2 i \pi y}$, so this is a group homomorphism.
2. Let $\mathbb{T}=\{x \in \mathbb{C}:|x|=1\}$ (here $|x|$ denotes the absolute value). Show that $\mathbb{R} / \mathbb{Z} \cong \mathbb{T}$.

Solution: Let $g \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{T}$ be the map defined by $g(x+\mathbb{Z}):=e^{2 i \pi x}$. Let us show that g is well defined: for all $x, y \in \mathbb{R}$, if $x+\mathbb{Z}=y+\mathbb{Z}$, then $y=x+k$ where $k \in \mathbb{Z}$ and $e^{2 i \pi y}=e^{2 i \pi(x+k)}=e^{2 i \pi x} e^{2 i \pi k}=e^{2 i \pi x} \cdot 1^{k}=e^{2 i \pi x}$. Let us now show that g is a group homomorphism: for all $x, y \in \mathbb{R}, g((x+\mathbb{Z})+(y+\mathbb{Z}))=g((x+y)+\mathbb{Z})=e^{2 i \pi(x+y)}=$ $e^{2 i \pi x} e^{2 i \pi y}=g(x+\mathbb{Z}) \cdot g(y+\mathbb{Z})$.
Let us show also that g is surjective. Pick $x \in \mathbb{C}$ mid $|x|=1$. Writing x in polar notation, $x=|x| e^{2 i \pi \theta}=e^{2 i \pi \theta}=g(\theta+\mathbb{Z})$ for some $\theta \in \mathbb{R}$. Finally, let us show that g is injective. Since g is a group homomorphism, it suffices to compute its kernel: $\operatorname{ker}(g)=\left\{x+\mathbb{Z}: g(x+\mathbb{Z})=e^{2 i \pi x}=1\right\}=\mathbb{Z}$.
Now that we know the first isomorphism theorem, we can also use it (note that we just reproved it in this particular instance above). Let f be the group homomorphism of the previous question, then \mathbb{T} is its image and its kernel is $\left\{x \in \mathbb{R}: e^{2 i \pi x}=\right.$ $1\}=\mathbb{Z}$ so $\mathbb{T} \cong \mathbb{R} / \mathbb{Z}$.
3. Show that in $\mathbb{Q} / \mathbb{Z} \leqslant \mathbb{R} / \mathbb{Z}$ all elements have finite order but the order can be arbitrarily large.

Solution: Let $a \in \mathbb{Q}$, then $a=p / q$ for some $p \in \mathbb{Z}, q \in Z z_{>_{0}}$ and $q \cdot a=p \in Z z$ so $q \cdot(a \mathbb{Z})=(q \cdot a) \mathbb{Z}=\mathbb{Z}$ (the first equality is a additive instance of the well-known equation we (almost) proved by induction for the iteration of coset multiplication). So the order of a is at most q. Also, if we assume that p and q are relatively prime (and we can), then $n \cdot p / q \in \mathbb{Z}$ if and only if $q \mid n p$ and hence $q \mid n$, so q is the order of a and q can be arbitratily large.
4. Show that $\mathbb{Q} / \mathbb{Z} \cong \mu_{\infty}=\left\{x \in \mathbb{C}: x^{n}=1\right.$ for some $\left.n \in \mathbb{Z}_{>0}\right\} \leqslant \mathbb{T}$.

Solution: The image of \mathbb{Q} / \mathbb{Z} by the isomorphism between \mathbb{R} / \mathbb{Z} and \mathbb{T} is $X:=$ $\left\{e^{2 i \pi p / q}: p \in \mathbb{Z}\right.$ and $\left.q \in \mathbb{Z}_{>0}\right\}$ so $\mathbb{Q} / \mathbb{Z} \cong X$. Let us show that $X=\mu_{\infty}$. We have $\left(e^{2 i \pi p / q}\right)^{q}=e^{2 i \pi p}=1$ so $X \subseteq \mu_{\infty}$. Concersely, let $x \in \mathbb{C}$ and $n \in \mathbb{Z}_{>0}$ be such that $x^{n}=1$ so $|x|^{n}=1$ and, as $|x| \in \mathbb{R}_{>0},|x|=1$, i.e. $x=e^{2 i \pi t}$ for some $t \in \mathbb{R}$. As $x^{n}=1$, we have $n \cdot t=m \in \mathbb{Z}$ so $t=m / n \in \mathbb{Q}$ and hence $X=\mu_{\infty}$.

Note that the group μ_{∞} was called Z in the previous homework.

Problem 3 :

Let G be a group and $H \leqslant G$ such that $[G: H]=n<\infty$

1. Assume that $H \preccurlyeq G$, show that for all $g \in G, g^{n} \in H$.

Solution: We have $g H \in G / H$ which is a group of order n, it follows that $g^{n} H=$ $(g H)^{n}=H$ and therefore $g^{n} \in H$.
2. (Harder) Find a counterexample when H is not normal.

Solution: Let $G=S_{3}, H=\langle(01)\rangle$ and $g=(12)$, then $[G: H]=6 / 2=3$ and $g^{3}=g \notin H$.

Problem 4 :

Let $n \in \mathbb{Z}, n \geqslant 3$ and $d \mid n$. Let r denote one of the rotations in $D_{2 n}$ and $H=\left\langle r^{d}\right\rangle$.

1. Show that H is a normal subgroup of $D_{2 n}$.

Solution: Every element of H is of the form $r^{i d}$ for some $i \in \mathbb{Z}$. We have $r r^{i d} r^{-1}=$ $r^{i d} \in H$ so $r \in N_{D_{2 n}}(H)$ and $s r^{i d} s^{-1}=s s r^{-i d} \in H$ so $s \in N_{D_{2 n}}(H)$. As $D_{2 n}$ is generated by r and s, it follows that $N_{D_{2 n}}(H)=D_{2 n}$, i.e. $H 太 D_{2 n}$.
2. If $d=1$, show that $D_{2 n} / H \cong \mathbb{Z} / 2 \mathbb{Z}$.

Solution: $D_{2 n}=\langle r\rangle \cup s\langle r\rangle$ so these are two cosets of H in $D_{2 n}$. The group law is given by $H \cdot H=H=s s H=s H \cdot s H, s H \cdot H=s H=H \cdot s H$. It is now easy to check that by sending H to $\overline{0}$ and $s H$ to $\overline{1}$ we get an isomorphism between $D_{2 n} / H$ and $\mathbb{Z} / 2 \mathbb{Z}$.
More conceptually, $\left|D_{2 n}\right|=2 n$ and $|H|=n$ so, by Lagrange's theorem $D_{2 n} / H$ is an order 2 group, so it is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.
3. If $d=2$ (in particular, n has to be even), $D_{2 n} / H \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Solution: $D_{2 n}=\left\langle r^{2}\right\rangle \cup r\left\langle r^{2}\right\rangle \cup s\left\langle r^{2}\right\rangle \cup s r\left\langle r^{2}\right\rangle$ so these are the fours cosets of H in $D_{2 n}$. We can now check that for $i, j, k, l \in\{0,1\}, s^{i} r^{j} H \cdot s^{k} r^{l} H=s^{i} r^{j} s^{k} r^{l} H=$ $s^{i+k} r^{l+(-1)^{k} j} H$. But since $r^{(-1)^{k} j} r^{j}=r^{0}$ or $r^{2 j}$ depending on the parity of k, we have $r^{(-1)^{k} j} r^{j} \in H$ and hence $s^{i} r^{j} H \cdot s^{k} r^{l} H=s^{i+k} r^{j+l} H$. It is now easy to check that the map from $D_{2 n} / H$ to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ sending $r^{i} s^{j}$ to (i, j) is a group homomorphism.
4. If $d>2, D_{2 n} / H \cong D_{2 d}$.

Solution: Let r_{d} and s_{d} denote, respectively, the rotation and symmetry that generate $D_{2 d}$ (we will continue to denote by r and s those in $D_{2 n}$). Let $\varphi\left(r^{i} s^{j}\right)=\left(r_{d}^{i} s_{d}^{j}\right)$. Let us check that this map is well defined. If $r^{i} s^{j}=r^{k} s^{l}$, then $r^{i-k}=s^{l-j}$ so $r^{i-k}=1=$ s^{l-j} and so $n \mid i-k$ and $2 \mid l-j$. In particular, $d \mid i-k$ so $r_{d}^{i-k}=1=s_{d}^{l-j}$ and $r_{d}^{i} s_{d}^{j}=r_{d}^{k} s_{d}^{l}$. Also, φ is a group homomorphism, indeed $\varphi\left(r^{i} s^{j} r^{k} s^{l}\right)=\varphi\left(r^{i-k} s^{j+l}\right)=r_{d}^{i-k} s_{d}^{j+l}=$ $r_{d}^{i} s_{d}^{j} r_{d}^{k} s_{d}^{l}=\varphi\left(r^{i} s^{j}\right) \cdot \varphi\left(r^{k} s^{l}\right)$. It is clear that φ is onto and $\varphi\left(r^{i} s^{j}\right)=r_{d}^{i} s^{j}=1$ if and only if $d \mid i$ and $2 \mid j$, i.e. $r^{i} s^{j}=r^{i} \in\left\langle r^{d}\right\rangle=H$. It now follows from the first isomorphism theorem that $D_{2 n} / H=D_{2 n} / \operatorname{ker}(\varphi) \cong \operatorname{Im}(\varphi)=D_{2 d}$.

