Homework 4

Due October 2nd

The questions indicated as Harder will not be taken in account when grading.

Problem 1 :

Let $G \leq \mathbb{R}$.

- 1. Assume that for all $b \in \mathbb{R}_{>0}$, there exists $g \in G$ such that 0 < g < b. Show that for all $x, y \in \mathbb{R}$ such that x < y, there is $g \in G$ such that x < g < y.
- 2. (Harder) If $a := \inf\{g \in G : g > 0\} \neq 0$, show that $G = a\mathbb{Z}$.

Problem 2:

- 1. Show that $x \mapsto e^{2i\pi x}$ is group homomorphism from \mathbb{R} to \mathbb{C}^* .
- 2. Let $\mathbb{T} = \{x \in \mathbb{C} : |x| = 1\}$ (here |x| denotes the absolute value). Show that $\mathbb{R}/\mathbb{Z} \cong \mathbb{T}$.
- 3. Show that in $\mathbb{Q}/\mathbb{Z} \leq \mathbb{R}/\mathbb{Z}$ all elements have finite order but the order can be arbitrarily large.
- 4. Show that $\mathbb{Q}/\mathbb{Z} \cong \mu_{\infty} = \{x \in \mathbb{C} : x^n = 1 \text{ for some } n \in \mathbb{Z}_{>0}\} \leq \mathbb{T}.$

Note that the group μ_{∞} was called Z in the previous homework.

Problem 3:

Let G be a group and $H \leq G$ such that $[G:H] = n < \infty$

- 1. Assume that $H \leq G$, show that for all $g \in G$, $g^n \in H$.
- 2. (Harder) Find a counterexample when H is not normal.

Problem 4:

Let $n \in \mathbb{Z}$, $n \ge 3$ and d|n. Let r denote one of the rotations in D_{2n} and $H = \langle r^d \rangle$.

- 1. Show that $H \leq D_{2n}$.
- 2. If d = 1, show that $D_{2n}/H \cong \mathbb{Z}/2\mathbb{Z}$.
- 3. If d = 2 (in particular, n has to be even), $D_{2n}/H \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 4. If d > 2, $D_{2n}/H \cong D_{2d}$.