Solutions to homework 5

Due October 9th

Problem 1:

Let $m, n \in \mathbb{Z}_{>0}$ be such that gcd(m, n) = 1. Let G be a group of order $mn, H \leq G$ such that |H| = n and $K \leq G$.

1. Show that there exists m_0 dividing m such that $|HK| = m_0 n$.

Solution: Since $K \leq G$, $HK \leq G$ is a group. It follows that |HK| divides mn. Also, since $H \leq HK$, n divides |HK| and there exists $m_0 \in \mathbb{Z}$ such that $|HK| = m_0 n$. By the previous remark $m_0 n | mn$ and hence $m_0 | m$.

2. Show that there exists n_0 dividing n such that $|K| = m_0 n_0$.

Solution: Let $n_0 = |H \cap K|$. Since $H \cap K \leq H$, we have that n_0 divides n = |H|. Moreover, $m_0 n = |HK| = \frac{|H||K|}{|H \cap K|} = \frac{n|K|}{n_0}$ and hence $|K| = \frac{m_0 n n_0}{n} = m_0 n_0$.

3. Show that $H \cap K$ is maximal among subgroups of K whose order divides n.

Solution: Let $L \leq K$ be such that $H \cap K \leq L$ and l := |L| divides n. Since $H \cap K \leq L \leq K$, we have that n_0 divides l which in turn divides m_0n_0 . So $l = n_0l_0$ for some $l_0 \in \mathbb{Z}$ and n_0l_0 divides m_0n_0 . Thus l_0 divides m_0 which divides m. But since l divides n, l_0 also divides n and hence it divides gcd(m, n) = 1. It follows that $l_0 = 1$ and $|L| = n_0 = |H \cap K|$. Since $H \cap K \leq L$, we must have $H \cap K = L$ and $H \cap K$ is maximal.

4. Show that gcd(|HK/K|, |G/HK|) = 1.

Solution: We have $|HK/K| = \frac{|HK|}{|K|} = \frac{m_0n}{m_0n_0} = \frac{n}{n_0}$. On the other hand $|G/HK| = \frac{|G|}{|HK|} = \frac{mn}{m_0n} = \frac{m}{m_0}$. Since $\frac{n}{n_0}$ divides n and $\frac{m}{m_0}$ divides m, their gcd divides gcd(m, n) = 1 and therefore it is equal to 1.

5. Assume that $|G| = p^{\alpha}r$ where gcd(p,r) = 1, $|K| = p^{\beta}s$ where gcd(p,s) = 1 and $|H| = p^{\alpha}$. Show that $|H \cap K| = p^{\beta}$ and $|HK/K| = p^{\alpha-\beta}$.

Solution: Let us apply the previous computations with m = s and $n = p^{\alpha}$. Then $m_0 n_0 = p^{\beta} s$ where m_0 divides r which is coprime to p and hence p^{β} . It follows that $n_0 = p^{\beta} l$ for some $l \in \mathbb{Z}$. Since n_0 divides p^{α} , $l = p^{\gamma}$ for some $\gamma \in \mathbb{Z}$. Then $m_0 n_0 = m_0 p^{\beta+\gamma} = p^{\beta} s$ and hence $m_0 p^{\gamma} = s$. But gcd(s, p) = 1 so $\gamma = 0$. It follows that $|H \cap K| = n_0 = p^{\beta}$ and $|HK/K| = \frac{n}{n_0} = p^{\alpha-\beta}$.

Problem 2:

Let G be a group, $N \leq G$ and $H \leq G$. Assume $H \cap N = \{1\}$.

1. Show that the map $f: N \times H \to NH$ defined by $f((n,h)) = n \cdot h$ is a bijection.

Solution: The map f is surjective by definition of $NH = \{n \cdot h : n \in N \text{ and } h \in h\}$. Let us now show it is injective. Pick $n_1, n_2 \in N$ and $h_1, h_2 \in H$ and assume $n_1 \cdot h_1 = f(n_1, h_1) = f(n_2, h_2) = n_2 \cdot h_2$. Then $n_2^{-1} \cdot n_1 = h_2 \cdot h_1^{-1} \in N \cap H = \{1\}$. It follows that $n_2^{-1} \cdot n_1 = 1 = h_2 \cdot h_1^{-1}$ and hence $n_1 = n_2$ and $h_1 = h_2$. 2. Show that f is a group isomorphism if and only if $H \leq C_G(N)$. Here $N \times H$ is considered as a group with the usual coordinatewise group law.

Solution: Let us assume that f is a group homomorphism and pick $n \in N$ and $h \in H$. We have $n \cdot h = f(n, h) = f((1, h) \cdot (n, 1)) = f(1, h) \cdot f(n, 1) = h \cdot n$, so every element of H commutes with every element of N, i.e. $H \subseteq C_G(N)$. Since both are subgroups of G, we do have $H \leq C_G(N)$.

Conversely, assume $H \leq C_G(N)$ and pick $n_1, n_2 \in N$ and $h_1, h_2 \in H$. Then $f((n_1, h_1) \cdot (n_2, h_2)) = f(n_1 \cdot n_2, h_1 \cdot h_2) = n_1 \cdot n_2 \cdot h_1 \cdot h_2 = n_1 \cdot h_1 \cdot n_2 \cdot h_2 = f(n_1, h_1) \cdot f(n_2, h_2).$

3. Show that there exists a group homomorphism $\theta : H \to \operatorname{Aut}(N)$ such that for all $n \in N$ and $h \in H$, $h \cdot n = [\theta(h)](n) \cdot h$.

Solution: Since $N \leq G$, for all $n \in N$ and $h \in H$, $h \cdot n \cdot h^{-1} \in N$. So H acts on N by conjugation (the fact that it is indeed an action, is the same computation as always : $h_1 \cdot h_2 \cdot n \cdot h_2^{-1} \cdot h_1^{-1} = h_1 \cdot h_2 \cdot n(h_1 \cdot h_2)^{-1}$). Let $\theta : H \to S_N$ be the associated permutation representation. For all $n \in N$ and $h \in H$, we have $[\theta(h)](n) = h \cdot n \cdot h^{-1}$ and hence $h \cdot n = [\theta(h)](n) \cdot h$.

Let us now check that for all $h \in H$, $\theta(h)$ is a group homomorphism. For all $n_1, n_2 \in N$, we have $[\theta(h)](n_1 \cdot n_2) = h \cdot n_1 \cdot n_2 \cdot h^{-1} = h \cdot n_1 \cdot h^{-1} \cdot h \cdot n_2 \cdot h^{-1} = [\theta(h)](n_1) \cdot [\theta(h)](n_2)$. Since $\theta(h) \in S_N$, it follows that $\theta(h) \in \operatorname{Aut}(N)$. Since θ is already known to be a group homomorphism from H to S_N and $\operatorname{Aut}(N) \leq S_N$, we are done.

4. Let us define the operation on $N \times H$: $(n_1, h_1) \star (n_2, h_2) = (n_1 \cdot [\theta(h_1)](n_2), h_1 \cdot h_2)$. Show that $(N \times H, \star)$ is a group and that it is isomorphic to (NH, \cdot) .

Solution: We have first to prove that \star defines a group law on $N \times H$. Let us first prove associtivity. Pick $n_1, n_2, n_3 \in N$ and $h_1, h_2, h_3 \in H$. We have:

$$\begin{aligned} ((n_1, h_1) \star (n_2, h_2)) \star (n_3, h_3) &= (n_1 \cdot [\theta(h_1)](n_2), h_1 \cdot h_2) \star (n_3, h_3) \\ &= (n_1 \cdot [\theta(h_1)](n_2) \cdot [\theta(h_1 \cdot h_2)](n_3), h_1 \cdot h_2 \cdot h_3) \\ &= (n_1 \cdot [\theta(h_1)](n_2) \cdot [\theta(h_1)]([\theta(h_2)](n_3)), h_1 \cdot h_2 \cdot h_3) \\ &= (n_1 \cdot [\theta(h_1)](n_2 \cdot [\theta(h_2)](n_3)), h_1 \cdot h_2 \cdot h_3) \\ &= (n_1, h_1) \star (n_2 \cdot [\theta(h_2)](n_3), h_2 \cdot h_3) \\ &= (n_1, h_1) \star ((n_2, h_2) \star (n_3, h_3)). \end{aligned}$$

Let us now prove that 1, 1 is the identity. Pick $n \in N$ and $h \in H$, we have $(n, h) \star (1,1) = (n \cdot [\theta(h)](1), h \cdot 1) = (n \cdot 1, h) = (n, h)$ and $(1,1) \star (n, h) = (1 \cdot [\theta(1)](n), 1 \cdot h) = (n, h)$. Finally, let us prove that $(\theta[h^{-1}](n^{-1}), h^{-1})$ is the inverse of n, h. We have:

$$\begin{aligned} (n,h) \star (\theta[h^{-1}](n^{-1}), h^{-1}) &= (n \cdot [\theta(h)](\theta[h^{-1}](n^{-1})), h \cdot h^{-1}) \\ &= (n \cdot \theta[h \cdot h^{-1}](n^{-1}), 1) \\ &= (n \cdot n^{-1}, 1) \\ &= (1,1) \end{aligned}$$

and

$$\begin{aligned} (\theta[h^{-1}](n^{-1}), h^{-1}) \star (n, h) &= (\theta[h^{-1}](n^{-1}) \cdot \theta[h^{-1}](n), h^{-1} \cdot h) \\ &= (\theta[h^{-1}](n^{-1} \cdot n), 1) \\ &= (\theta[h^{-1}](1), 1) \\ &= (1, 1) \end{aligned}$$

Finally, let us check that f is a group homomorphism. Pick $n_1, n_2 \in N$ and $h_1, h_2 \in H$. We have:

$$f((n_1, h_1) \star (n_2, h_2)) = f(n_1 \cdot [\theta(h_1)](n_2), h_1 \cdot h_2)$$

= $n_1 \cdot [\theta(h_1)](n_2) \cdot h_1 \cdot h_2$
= $n_1 \cdot h_1 \cdot n_2 \cdot h_2$
= $f(n_1, h_1) \cdot f(n_2, h_2).$

One other way of proceeding would be to first prove that $f((n_1, h_1) \star (n_2, h_2)) = f(n_1, h_1) \cdot f(n_2, h_2)$ and then use this, and the fact that f is bijective to prove that $(N \times H, \star)$ is a group. Some of the computations are a lot easier, associativity, for example.