## Solutions to homework 5

Due October 9th

## Problem 1:

Let $m, n \in \mathbb{Z}_{>0}$ be such that $\operatorname{gcd}(m, n)=1$. Let $G$ be a group of order $m n, H \leqslant G$ such that $|H|=n$ and $K \geqq G$.

1. Show that there exists $m_{0}$ dividing $m$ such that $|H K|=m_{0} n$.

Solution: Since $K \geqq G, H K \leqslant G$ is a group. It follows that $|H K|$ divides $m n$. Also, since $H \leqslant H K, n$ divides $|H K|$ and there exists $m_{0} \in \mathbb{Z}$ such that $|H K|=m_{0} n$. By the previous remark $m_{0} n \mid m n$ and hence $m_{0} \mid m$.
2. Show that there exists $n_{0}$ dividing $n$ such that $|K|=m_{0} n_{0}$.

Solution: Let $n_{0}=|H \cap K|$. Since $H \cap K \leqslant H$, we have that $n_{0}$ divides $n=|H|$. Moreover, $m_{0} n=|H K|=\frac{|H||K|}{|H \cap K|}=\frac{n|K|}{n_{0}}$ and hence $|K|=\frac{m_{0} n n_{0}}{n}=m_{0} n_{0}$.
3. Show that $H \cap K$ is maximal among subgroups of $K$ whose order divides $n$.

Solution: Let $L \leqslant K$ be such that $H \cap K \leqslant L$ and $l:=|L|$ divides $n$. Since $H \cap K \leqslant$ $L \leqslant K$, we have that $n_{0}$ divides $l$ which in turn divides $m_{0} n_{0}$. So $l=n_{0} l_{0}$ for some $l_{0} \in \mathbb{Z}$ and $n_{0} l_{0}$ divides $m_{0} n_{0}$. Thus $l_{0}$ divides $m_{0}$ which divides $m$. But since $l$ divides $n, l_{0}$ also divides $n$ and hence it divides $\operatorname{gcd}(m, n)=1$. It follows that $l_{0}=1$ and $|L|=n_{0}=|H \cap K|$. Since $H \cap K \leqslant L$, we must have $H \cap K=L$ and $H \cap K$ is maximal.
4. Show that $\operatorname{gcd}(|H K / K|,|G / H K|)=1$.

Solution: We have $|H K / K|=\frac{|H K|}{|K|}=\frac{m_{0} n}{m_{0} n_{0}}=\frac{n}{n_{0}}$. On the other hand $|G / H K|=$ $\frac{|G|}{|H K|}=\frac{m n}{m_{0} n}=\frac{m}{m_{0}}$. Since $\frac{n}{n_{0}}$ divides $n$ and $\frac{m}{m_{0}}$ divides $m$, their gcd divides $\operatorname{gcd}(m, n)=1$ and therefore it is equal to 1 .
5. Assume that $|G|=p^{\alpha} r$ where $\operatorname{gcd}(p, r)=1,|K|=p^{\beta} s$ where $\operatorname{gcd}(p, s)=1$ and $|H|=p^{\alpha}$. Show that $|H \cap K|=p^{\beta}$ and $|H K / K|=p^{\alpha-\beta}$.

Solution: Let us apply the previous computations with $m=s$ and $n=p^{\alpha}$. Then $m_{0} n_{0}=p^{\beta} s$ where $m_{0}$ divides $r$ which is coprime to $p$ and hence $p^{\beta}$. It follows that $n_{0}=p^{\beta} l$ for some $l \in \mathbb{Z}$. Since $n_{0}$ divides $p^{\alpha}, l=p^{\gamma}$ for some $\gamma \in \mathbb{Z}$. Then $m_{0} n_{0}=m_{0} p^{\beta+\gamma}=p^{\beta} s$ and hence $m_{0} p^{\gamma}=s$. But $\operatorname{gcd}(s, p)=1$ so $\gamma=0$. It follows that $|H \cap K|=n_{0}=p^{\beta}$ and $|H K / K|=\frac{n}{n_{0}}=p^{\alpha-\beta}$.

## Problem 2 :

Let $G$ be a group, $N \leqslant G$ and $H \leqslant G$. Assume $H \cap N=\{1\}$.

1. Show that the map $f: N \times H \rightarrow N H$ defined by $f((n, h))=n \cdot h$ is a bijection.

Solution: The map $f$ is surjective by definition of $N H=\{n \cdot h: n \in N$ and $h \in h\}$. Let us now show it is injective. Pick $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H$ and assume $n_{1} \cdot h_{1}=f\left(n_{1}, h_{1}\right)=f\left(n_{2}, h_{2}\right)=n_{2} \cdot h_{2}$. Then $n_{2}^{-1} \cdot n_{1}=h_{2} \cdot h_{1}^{-1} \in N \cap H=\{1\}$. It follows that $n_{2}^{-1} \cdot n_{1}=1=h_{2} \cdot h_{1}^{-1}$ and hence $n_{1}=n_{2}$ and $h_{1}=h_{2}$.
2. Show that $f$ is a group isomorphism if and only if $H \leqslant \mathrm{C}_{G}(N)$. Here $N \times H$ is considered as a group with the usual coordinatewise group law.

Solution: Let us assume that $f$ is a group homomorphism and pick $n \in N$ and $h \in H$. We have $n \cdot h=f(n, h)=f((1, h) \cdot(n, 1))=f(1, h) \cdot f(n, 1)=h \cdot n$, so every element of $H$ commutes with every element of $N$, i.e. $H \subseteq \mathrm{C}_{G}(N)$. Since both are subgroups of $G$, we do have $H \leqslant \mathrm{C}_{G}(N)$.
Conversely, assume $H \leqslant \mathrm{C}_{G}(N)$ and pick $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H$. Then $f\left(\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)\right)=f\left(n_{1} \cdot n_{2}, h_{1} \cdot h_{2}\right)=n_{1} \cdot n_{2} \cdot h_{1} \cdot h_{2}=n_{1} \cdot h_{1} \cdot n_{2} \cdot h_{2}=$ $f\left(n_{1}, h_{1}\right) \cdot f\left(n_{2}, h_{2}\right)$.
3. Show that there exists a group homomorphism $\theta: H \rightarrow \operatorname{Aut}(N)$ such that for all $n \in N$ and $h \in H, h \cdot n=[\theta(h)](n) \cdot h$.

Solution: Since $N \geqq G$, for all $n \in N$ and $h \in H, h \cdot n \cdot h^{-1} \in N$. So $H$ acts on $N$ by conjugation (the fact that it is indeed an action, is the same computation as always : $\left.h_{1} \cdot h_{2} \cdot n \cdot h_{2}^{-1} \cdot h_{1}^{-1}=h_{1} \cdot h_{2} \cdot n\left(h_{1} \cdot h_{2}\right)^{-1}\right)$. Let $\theta: H \rightarrow \mathrm{~S}_{N}$ be the associated permutation representation. For all $n \in N$ and $h \in H$, we have $[\theta(h)](n)=h \cdot n \cdot h^{-1}$ and hence $h \cdot n=[\theta(h)](n) \cdot h$.
Let us now check that for all $h \in H, \theta(h)$ is a group homomorphism. For all $n_{1}, n_{2} \in N$, we have $[\theta(h)]\left(n_{1} \cdot n_{2}\right)=h \cdot n_{1} \cdot n_{2} \cdot h^{-1}=h \cdot n_{1} \cdot h^{-1} \cdot h \cdot n_{2} \cdot h^{-1}=$ $[\theta(h)]\left(n_{1}\right) \cdot[\theta(h)]\left(n_{2}\right)$. Since $\theta(h) \in S_{N}$, it follows that $\theta(h) \in \operatorname{Aut}(N)$. Since $\theta$ is already known to be a group homomorphism from $H$ to $S_{N}$ and $\operatorname{Aut}(N) \leqslant S_{N}$, we are done.
4. Let us define the operation on $N \times H:\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} \cdot h_{2}\right)$. Show that $(N \times H, \star)$ is a group and that it is isomorphic to $(N H, \cdot)$.

Solution: We have first to prove that * defines a group law on $N \times H$. Let us first prove associtivity. Pick $n_{1}, n_{2}, n_{3} \in N$ and $h_{1}, h_{2}, h_{3} \in H$. We have:

$$
\begin{aligned}
\left(\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)\right) \star\left(n_{3}, h_{3}\right) & =\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} \cdot h_{2}\right) \star\left(n_{3}, h_{3}\right) \\
& =\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right) \cdot\left[\theta\left(h_{1} \cdot h_{2}\right)\right]\left(n_{3}\right), h_{1} \cdot h_{2} \cdot h_{3}\right) \\
& =\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right) \cdot\left[\theta\left(h_{1}\right)\right]\left(\left[\theta\left(h_{2}\right)\right]\left(n_{3}\right)\right), h_{1} \cdot h_{2} \cdot h_{3}\right) \\
& =\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2} \cdot\left[\theta\left(h_{2}\right)\right]\left(n_{3}\right)\right), h_{1} \cdot h_{2} \cdot h_{3}\right) \\
& =\left(n_{1}, h_{1}\right) \star\left(n_{2} \cdot\left[\theta\left(h_{2}\right)\right]\left(n_{3}\right), h_{2} \cdot h_{3}\right) \\
& =\left(n_{1}, h_{1}\right) \star\left(\left(n_{2}, h_{2}\right) \star\left(n_{3}, h_{3}\right)\right) .
\end{aligned}
$$

Let us now prove that 1,1 is the identity. Pick $n \in N$ and $h \in H$, we have $(n, h)$ * $(1,1)=(n \cdot[\theta(h)](1), h \cdot 1)=(n \cdot 1, h)=(n, h)$ and $(1,1) \star(n, h)=(1 \cdot[\theta(1)](n), 1 \cdot h)=$ $(n, h)$. Finally, let us prove that $\left(\theta\left[h^{-1}\right]\left(n^{-1}\right), h^{-1}\right)$ is the inverse of $n, h$. We have:

$$
\begin{aligned}
(n, h) \star\left(\theta\left[h^{-1}\right]\left(n^{-1}\right), h^{-1}\right) & =\left(n \cdot[\theta(h)]\left(\theta\left[h^{-1}\right]\left(n^{-1}\right)\right), h \cdot h^{-1}\right) \\
& =\left(n \cdot \theta\left[h \cdot h^{-1}\right]\left(n^{-1}\right), 1\right) \\
& =\left(n \cdot n^{-1}, 1\right) \\
& =(1,1)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\theta\left[h^{-1}\right]\left(n^{-1}\right), h^{-1}\right) \star(n, h) & =\left(\theta\left[h^{-1}\right]\left(n^{-1}\right) \cdot \theta\left[h^{-1}\right](n), h^{-1} \cdot h\right) \\
& =\left(\theta\left[h^{-1}\right]\left(n^{-1} \cdot n\right), 1\right) \\
& =\left(\theta\left[h^{-1}\right](1), 1\right) \\
& =(1,1)
\end{aligned}
$$

Finally, let us check that $f$ is a group homomorphism. Pick $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in$ $H$. We have:

$$
\begin{aligned}
f\left(\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)\right) & =f\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} \cdot h_{2}\right) \\
& =n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right) \cdot h_{1} \cdot h_{2} \\
& =n_{1} \cdot h_{1} \cdot n_{2} \cdot h_{2} \\
& =f\left(n_{1}, h_{1}\right) \cdot f\left(n_{2}, h_{2}\right) .
\end{aligned}
$$

One other way of proceeding would be to first prove that $f\left(\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)\right)=$ $f\left(n_{1}, h_{1}\right) \cdot f\left(n_{2}, h_{2}\right)$ and then use this, and the fact that $f$ is bijective to prove that $(N \times H, \star)$ is a group. Some of the computations are a lot easier, associativity, for example.

