Homework 5

Due October 9th

Problem 1:

Let $m, n \in \mathbb{Z}_{>0}$ be such that gcd(m,n) = 1. Let G be a group of order $mn, H \leqslant G$ such that |H| = n and $K \leqslant G$.

- 1. Show that there exists m_0 dividing m such that $|HK| = m_0 n$.
- 2. Show that there exists n_0 dividing n such that $|K| = m_0 n_0$.
- 3. Show that $H \cap K$ is maximal among subgroups of K whose order divides n.
- 4. Show that gcd(|HK/K|, |G/HK|) = 1.
- 5. Assume that $|G| = p^{\alpha}r$ where gcd(p,r) = 1, $|K| = p^{\beta}s$ where gcd(p,s) = 1 and $|H| = p^{\alpha}$. Show that $|H \cap K| = p^{\beta}$ and $|HK/K| = p^{\alpha-\beta}$.

Problem 2:

Let G be a group, $N \leq G$ and $H \leq G$. Assume $H \cap N = \{1\}$.

- 1. Show that the map $f: N \times H \to NH$ defined by $f((n,h)) = n \cdot h$ is a bijection.
- 2. Show that f is a group isomorphism if and only if $H \leq C_G(N)$. Here $N \times H$ is considered as a group with the usual coordinatewise group law.
- 3. Show that there exists a group homomorphism $\theta: H \to \operatorname{Aut}(N)$ such that for all $n \in N$ and $h \in H$, $h \cdot n = [\theta(h)](n) \cdot h$.
- 4. Let us define the operation on $N \times H$: $(n_1, h_1) \star (n_2, h_2) = (n_1 \cdot [\theta(h_1)](n_2), h_1 \cdot h_2)$. Show that $(N \times H, \star)$ is a group and that it is isomorphic to (NH, \cdot) .