Homework 5

Due October 9th

Problem 1:

Let $m, n \in \mathbb{Z}_{>0}$ be such that $\operatorname{gcd}(m, n)=1$. Let G be a group of order $m n, H \leqslant G$ such that $|H|=n$ and $K 太 G$.

1. Show that there exists m_{0} dividing m such that $|H K|=m_{0} n$.
2. Show that there exists n_{0} dividing n such that $|K|=m_{0} n_{0}$.
3. Show that $H \cap K$ is maximal among subgroups of K whose order divides n.
4. Show that $\operatorname{gcd}(|H K / K|,|G / H K|)=1$.
5. Assume that $|G|=p^{\alpha} r$ where $\operatorname{gcd}(p, r)=1,|K|=p^{\beta} s$ where $\operatorname{gcd}(p, s)=1$ and $|H|=p^{\alpha}$. Show that $|H \cap K|=p^{\beta}$ and $|H K / K|=p^{\alpha-\beta}$.

Problem 2 :

Let G be a group, $N \leqslant G$ and $H \leqslant G$. Assume $H \cap N=\{1\}$.

1. Show that the map $f: N \times H \rightarrow N H$ defined by $f((n, h))=n \cdot h$ is a bijection.
2. Show that f is a group isomorphism if and only if $H \leqslant \mathrm{C}_{G}(N)$. Here $N \times H$ is considered as a group with the usual coordinatewise group law.
3. Show that there exists a group homomorphism $\theta: H \rightarrow \operatorname{Aut}(N)$ such that for all $n \in N$ and $h \in H, h \cdot n=[\theta(h)](n) \cdot h$.
4. Let us define the operation on $N \times H:\left(n_{1}, h_{1}\right) \star\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot\left[\theta\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} \cdot h_{2}\right)$. Show that $(N \times H, \star)$ is a group and that it is isomorphic to $(N H, \cdot)$.
