Silvain Rideau 1091 Evans

Solutions to homework 6

Due October 16th

Problem 1:

Let R be a unitary commutative ring such that $1 \neq 0$ and $S \subseteq R$ be closed under multiplication (i.e. $\forall x, y \in S, xy \in S$) and contain 1. We define the relation E on $R \times S$ by (a, s)E(b, t) if and only if there exists $x \in S$ such that xat = xbs.

1. Show that E is an equivalence relation.

Solution: Let $a, b, c \in R$ and $s, t, u \in S$. We have 1as = 1as so (a, s)E(a, s) and E is reflexive. If (a, s)E(b, t), then there exists $x \in S$ such that xat = xbs and xbs = xat so (b,t)E(a,s) and E is symmetric. Finally, assume (a,s)E(b,t) and (b,t)E(c,u), then there exists x and $y \in S$ such that xat = xbs and ybu = yct. We then have (xyt)au = yxbsu = (xyt)cs where $xyt \in S$, so (a,s)E(c,u) and E is transitive.

2. Let R_S denote the set $(R \times S)/E$ (it is the set of *E*-classes). If $(a, s) \in R \times S$, we denote by $\overline{(a,s)} \in R_S$ the *E*-class of (a,s). Show that the map $(\overline{(a,s)}, \overline{(b,t)}) \mapsto (ab, st)$ is well defined. We denote this map \star .

Solution: Assume $(a_1, s_1)E(a_2, s_2)$ and $(b_1, t_1)E(b_2, t_2)$, then there exists x and $y \in S$ such that $xa_1s_2 = xa_2s_1$ and $yb_1t_2 = yb_2t_1$. It follows that $(xy)(a_1b_1)(s_2t_2) = (xy)(a_2b_2)(s_1t_1)$ and \star is well defined.

3. Show that the map $(\overline{(a,s)}, \overline{(b,t)}) \mapsto \overline{(at+bs,st)}$ is well defined. We denote this map \Box .

Solution: Assume $(a_1, s_1)E(a_2, s_2)$ and $(b_1, t_1)E(b_2, t_2)$, then there exists x and $y \in S$ such that $xa_1s_2 = xa_2s_1$ and $yb_1t_2 = yb_2t_1$. It follows that $xy(a_1t_1+b_1s_1)t_2s_2 = xya_1t_1s_2t_2 + xyb_1s_1t_2s_2 = xya_2s_1t_1t_2 + xyb_2t_1s_1s_2 = xy(a_2t_2+b_2s_2)s_1t_1$, so \Box is well-defined.

4. Show that (R_S, \Box, \star) is a unitary commutative ring.

Solution: Let us start by showing associativity of \Box . We have

$$(\overline{(a,s)} \Box \overline{(b,t)}) \Box \overline{(c,u)} = \overline{(at+bs,st)} \Box \overline{(c,u)}$$

$$= \overline{((at+bs)u+cst,stu)}$$

$$= \overline{(atu+bsu+cst,stu)}$$

$$= \overline{(atu+(bu+ct)s,stu)}$$

$$= \overline{(a,s)} \Box \overline{(bu+ct,tu)}$$

$$= \overline{(a,s)} \Box \overline{((b,t)} \Box \overline{(c,u)})$$

We have commutativity of \Box : $(a,s) \Box (b,t) = (at+bs,st) = (bs+at,ts) = (b,t) \Box (a,s)$; (0,1) is the additive identity: $(a,s) \Box (0,1) = (a \cdot 1 + 0 \cdot s, s \cdot 1) = (a,s)$ and we have an additive inverse: $(a,s) \Box (-a,s) = (as-as,s^2) = (0,s^2) = (0,1)$. The last equality comes from the fact that $1 \cdot 0 \cdot 1 = 0 = 1 \cdot 0 \cdot s^2$.

Finally \star distributes over \square :

$$\overline{(a,s)} \star (\overline{(b,t)} \Box \overline{(c,u)}) = \overline{(a,s)} \star \overline{(bu+ct,tu)}$$

$$= \overline{(a(bu+ct),stu)}$$

$$= \overline{(abu+act,stu)}$$

$$= \overline{(absu+acst,stsu)}$$

$$= \overline{(ab,st)} \Box \overline{(ac,su)}$$

$$= (\overline{(a,s)} \star \overline{(b,t)}) \Box (\overline{(a,s)} \star \overline{(c,u)}).$$

The fourth equality comes from the fact that $1 \cdot (absu + acst)stu = 1 \cdot (abu + act)s^2tu$.

5. Show that the map $a \mapsto \overline{(a,1)}$ is a unitary ring homomorphism from $\varphi : R \to R_S$.

Solution: Let us show it respects addition: $\varphi(a+b) = \overline{(a+b,1)} = \overline{(a\cdot 1+b\cdot 1,1^2)} = \overline{(a,1)} = \overline{(a,1)}$; multiplication: $\varphi(ab) = \overline{(ab,1)} = \overline{(ab,1^2)} = \overline{(a,1)} \star \overline{(b,1)}$ and multiplicative identity: $\varphi(1) = \overline{(1,1)}$.

6. Show that if S contains 0 then R_S is the trivial ring.

Solution: Let $a \in R$ and $s \in S$, we have $0 \cdot a \cdot 1 = 1 \cdot 0 \cdot s$, it follows that $\overline{(a,b)} = \overline{(0,1)}$ and that S contains only one element.

7. Show that φ is not injective if and only if S contains a zero-divisor.

Solution: Let us first assume that S contains a zero divisor s. So there exists $y \in R$ such that sy = 0. Now $s \cdot y \cdot 1 = 0 = s \cdot 0 \cdot 1$. So $\varphi(y) = \overline{(y,1)} = \overline{(0,1)} = \varphi(0)$. So φ is not injective.

Conversely, assume φ is not injective, then there exists $y \in \ker(\varphi) \setminus \{0\}$, i.e. $\varphi(y) = \overline{(y,1)} = \overline{(0,1)}$. Hence there exists s, S such that $s \cdot y = s \cdot y \cdot 1 = s \cdot 0 \cdot 1 = 0$. So $s \in S$ is a zero divisor.

8. Show that $R \setminus \{0\}$ is closed under multiplication if and only if R is an integral domain.

Solution: Let us assume that R is an integral domain and let $s, t \in R \setminus \{0\}$. Then because neither s or t are zero divisors, $st \neq 0$ and $st \in R \setminus \{0\}$.

Conversely, if $R \setminus \{0\}$ is closed under multiplication and $s, t \in R \setminus \{0\}$, then $st \neq 0$, so s is not a zero divisor and the only zero divisor in R is 0: R is an integral domain (we already know it is unitary, commutative and non trivial).

9. Assume that R is an integral domain. Show that $R_{(R \setminus \{0\})}$ is a field.

Solution: Let $\overline{(a,s)} \in R_{R \setminus \{0\}}$. If a = 0, as we saw above, $\overline{(a,s)} = \overline{(0,1)}$. If follows that if $\overline{(a,s)} \neq \overline{(0,1)}$, we must have $a \neq 0$ and hence $\overline{(s,a)} \in R_{R \setminus \{0\}}$. We have $\overline{(a,s)} \star \overline{(s,a)} = \overline{(as,as)} = \overline{(1,1)}$. The last equality comes from the fact that $1 \cdot as \cdot 1 = 1 \cdot 1 \cdot as$. So every non zero element in $R_{R \setminus \{0\}}$ is invertible, i.e. it is a field.

10. Show that $\mathbb{Z}_{(\mathbb{Z}\setminus\{0\})}$ is isomorphic (as a unitary ring) to \mathbb{Q} .

Solution: Let $\varphi(\overline{(m,n)}) = mn^{-1}$. Let us show that φ is well defined. If $\overline{(m,n)} = \overline{(p,q)}$, then there exists $s \in \mathbb{Z} \setminus \{0\}$ such that smq = snp. But \mathbb{Z} is an integral domain and $s \neq 0$ so we have mq = np and thus $mn^{-1} = pq^{-1}$.

Let us now show that φ is a unitary ring homomorphism. We have $\varphi(\overline{(m,n)} \square (p,q)) = \varphi(\overline{(mq+pn,nq)}) = (mq+pn)(nq)^{-1} = mqq^{-1}n^{-1} + pnq^{-1}n^{-1} = mn^{-1} + pq^{-1} = \varphi(\overline{(m,n)}) + \varphi(\overline{(p,q)})$; also $\varphi(\overline{(m,n)} \star \overline{(p,q)}) = \varphi(\overline{(mp,nq)}) = (mp)(nq)^{-1} = mn^{-1}pq^{-1} = \varphi(\overline{(m,n)})\varphi(\overline{(p,q)})$ and $\varphi(\overline{(1,1)}) = 1 \cdot 1^{-1} = 1$.

If $mn^{-1} = \varphi(\overline{(m,n)}) = 0$ then, because $n \neq 0$, we have m = 0 and $\overline{(m,n)} = \overline{(0,1)}$. So $\ker(\varphi) = \{(0,1)\}$ and φ is injective. Finally, pick any $q \in \mathbb{Q}$. We have $q = mn^{-1} = \varphi(\overline{(m,n)})$ for some $m \in \mathbb{Z}$ and $n \in \mathbb{Z} \setminus \{0\}$ so φ is surjective.