Homework 6

Due October 16th

Problem 1:

Let R be a commutative ring such that $1 \neq 0$ and $S \subseteq R$ be closed under multiplication (i.e. $\forall x, y \in S, xy \in S$) and contain 1. We define the relation E on $R \times S$ by (a, s)E(b, t) if and only if there exists $x \in S$ such that xat = xbs.

- 1. Show that E is an equivalence relation.
- 2. Let R_S denote the set $(R \times S)/E$ (it is the set of *E*-classes). If $(a, s) \in R \times S$, we denote by $\overline{(a,s)} \in R_S$ the *E*-class of (a,s). Show that the map $(\overline{(a,s)}, \overline{(b,t)}) \mapsto (ab, st)$ is well defined. We denote this map \star .
- 3. Show that the map $(\overline{(a,s)}, \overline{(b,t)}) \mapsto \overline{(at+bs,st)}$ is well defined. We denote this map \Box .
- 4. Show that (R_S, \Box, \star) is a commutative ring.
- 5. Show that the map $a \mapsto \overline{(a,1)}$ is a ring homomorphism from $\varphi : R \to R_S$.
- 6. Show that if S contains 0 then R_S is the trivial ring.
- 7. Show that φ is not injective if and only if S contains a zero-divisor.
- 8. Show that $R \smallsetminus \{0\}$ is closed under multiplication if and only if R is an integral domain.
- 9. Assume that R is an integral domain. Show that $R_{(R \setminus \{0\})}$ is a field.
- 10. Show that $\mathbb{Z}_{(\mathbb{Z}\setminus\{0\})}$ is isomorphic (as a ring) to \mathbb{Q} .