Solutions to homework 7

Due October 23rd

Problem 1 (Action of the dihedral group on the diagonals) :
Let $n \geqslant 4$ be an even positive integer. Let us number the vertices of the n-gon by $\mathbb{Z} / n \mathbb{Z}$ (clockwise for example). And let $X=\{\{i, j\}: i$ and j number opposite vertices $\}$. So X is the set of diagonals of the n-gon. Let $r \in D_{2 n}$ be the rotation sending the vertex 0 to the vertex 1 and s be the symmetry that fixes the vertex 0 .

1. Let $\sigma \in D_{2 n}$ and $\{i, j\} \in X$, show that $\{\sigma(i), \sigma(j)\} \in X$ where the action of $D_{2 n}$ on the vertices is the usual one.

Solution: If i and j are opposite vertices, then $j=i+n / 2$. We have to check that for all $\sigma \in D_{2 n}, \sigma(i+n / 2)-\sigma(i)=n / 2 \bmod n$. Because this property is stable under composition, it suffices to prove it for r and s. We have $r(i+n / 2)-r(i)=$ $i+1+n / 2-(i+1)=n / 2$ and $s(i+n / 2)-s(i)=-(i+n / 2)-(-i)=-n / 2=n / 2 \bmod n$.
You don't really need the reduction as one can directly compute $r^{k} s^{l}(i+n / 2)-$ $r^{k} s^{l}(i)=(-1)^{l}(i+n / 2)+k-\left((-1)^{k} i+k\right)=(-1)^{l} n / 2=n / 2 \bmod n$.
2. Show that $\sigma \star\{i, j\}=\{\sigma(i), \sigma(j)\}$ is an action of $D_{2 n}$ on X.

Solution: Let σ_{1} and $\sigma_{2} \in D_{2 n}$, we have:

$$
\begin{aligned}
\left(\sigma_{1} \circ \sigma_{2}\right) \star\{i, j\} & =\left\{\sigma_{1} \circ \sigma_{2}(i), \sigma_{1} \circ \sigma_{2}(j)\right\} \\
& =\left\{\sigma_{1}\left(\sigma_{2}(i)\right), \sigma_{1}\left(\sigma_{2}(j)\right)\right\} \\
& =\sigma_{1} \star\left\{\sigma_{2}(i), \sigma_{2}(j)\right\} \\
& =\sigma_{1} \star\left(\sigma_{2} \star\{i, j\}\right)
\end{aligned}
$$

and $\operatorname{id} \star\{i, j\}=\{\operatorname{id}(i), \operatorname{id}(j)\}=\{i, j\}$.
3. Show that this action has a unique orbit.

Solution: Pick $i, k \in D_{2 n}$, then $r^{k-i} \star\{i, i+n / 2\}=\{i+k-i, i+n / 2+k-i\}=\{k, k+n / 2\}$, so the two diagonals $\{i, i+n / 2\}$ and $\{k, k+n / 2\}$ are in the same orbit. Note that here all the integer are considered modulo n although it is not specified (the same is true in what follows).
4. Show that $\operatorname{Stab}_{D_{2 n}}(\{i, j\})=\left\{1, r^{n / 2}, r^{2 i} s, r^{2 i+n / 2} s\right\}$.

Solution: Let $\sigma \in D_{2 n}, \sigma$ stabilizes $\{i, j\}$ if and only if $\sigma(i)=i$ or $\sigma(i)=j=i+n / 2$. We have $r^{k}(i)=i+k$ and $i+k=i$ if and only if $k=0$ and $i+k=i+n / 2$ if and only if $k=n / 2$. Similarly, $s r^{k}(i)=-i+k$ and $-i+k=i$ if and only if $k=2 i$ and $-i+k=i+n / 2$ if and only if $k=2 i+n / 2$. So the stabilizer contains those for elements.
5. Let $n=4$, show that $\operatorname{Stab}_{D_{8}}(X)=\left\{1, r^{2}, s, r^{2} s\right\}$.

Solution: We have $\operatorname{Stab}_{D_{8}}(X)=\bigcap_{i} \operatorname{Stab}_{D_{8}}(\{i, j\})=\bigcap_{i}\left\{1, r^{2}, r^{2 i} s, r^{2 i+2} s\right\}$. But if $i=0,2$ then $2 i=0 \bmod 4$ and $2 i+2=2 \bmod 4$ and if $i=1,3,2 i=2 \bmod 4$ and $2 i+2=0 \bmod 4$ so $\left\{1, r^{2}, r^{2 i} s, r^{2 i+2} s\right\}=\left\{1, r^{2}, s, r^{2} s\right\}$ does not depend on i and $\operatorname{Stab}_{D_{8}}(X)=\left\{1, r^{2}, s, r^{2} s\right\}$.
6. Let $n>4$, show that $\operatorname{Stab}_{D_{2 n}}(X)=\left\{1, r^{n / 2}\right\}$.

Solution: If $n>4$, then $0,0+n / 2,2$ and $2+n / 2$ are distinct (even modulo n) and hence $\operatorname{Stab}_{D_{2 n}}(X)=\bigcap_{i} \operatorname{Stab}_{D_{2 n}}(\{i, j\})=\bigcap_{i}\left\{1, r^{n / 2}, r^{2 i} s, r^{2 i+n / 2} s\right\}=\left\{1, r^{n / 2}\right\}$.

Problem 2:

Let K be a field. We define $K[[X]]=\left\{\sum_{i \in \mathbb{Z} \geq 0} a_{i} X^{i}: a_{i} \in K\right\}$ the set of formal power series with coefficients in K. The main difference with polynomials is that we now allow infinitely many coefficients to be non zero. We define addition as follows $\sum_{i} a_{i} X^{i}+\sum_{i} b_{i} X^{i}=$ $\sum_{i}\left(a_{i}+b_{i}\right) X^{i}$ and multiplication as follows $\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\sum_{i} b_{i} X^{i}\right)=\sum_{k}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) X^{k}$.

1. Show that $(K[[X]],+, \cdot)$ is a commutative ring.

Solution: The computations to show that these are rings are the same that for polynomials, but let us redo them to check that the infinite sum does not get in the way. We have to prove that ($K[[X]],+$) is an Abelian group:

- Associativity: $\left(\sum_{i} a_{i} X^{i}+\sum_{i} b_{i} X^{i}\right)+\sum_{i} c_{i} X^{i}=\sum_{i}\left(a_{i}+b_{i}\right) X^{i}+\sum_{i} c_{i} X^{i}=\sum_{i}\left(a_{i}+\right.$ $\left.b_{i}+c_{i}\right) X^{i}=\sum_{i} a_{i} X^{i}+\sum_{i}\left(b_{i}+c_{i}\right) X^{i}=\sum_{i} a_{i} X^{i}+\left(\sum_{i} b_{i} X^{i}+\sum_{i} c_{i} X^{i}\right)$;
- Commutativity: $\sum_{i} a_{i} X^{i}+\sum_{i} b_{i} X^{i}=\sum_{i}\left(a_{i}+b_{i}\right) X^{i}=\sum_{i}\left(b_{i}+a_{i}\right) X^{i}=\sum_{i} b_{i} X^{i}+$ $\sum_{i} a_{i} X^{i} ;$
- Additive identity: $\sum_{i} a_{i} X^{i}+\sum_{i} 0 X^{i}=\sum_{i}\left(a_{i}+0\right) X^{i}=\sum_{i} a_{i} X^{i}$;
- Additive inverse: $\sum_{i} a_{i} X_{i}+\sum_{i}\left(-a_{i}\right) X_{i}=\sum_{i}\left(a_{i}-a_{i}\right) X^{i}=\sum_{i} 0 X^{i}$.

Actually, as a group $(K[[X]],+)$ is just $K^{\mathbb{Z}_{\geqslant 0}}$ and we have seen multiple times that coordinate wise operation on a product of groups yields a group. Now let us consider the multiplication:

- Associativity:

$$
\begin{aligned}
\left(\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\sum_{i} b_{i} X^{i}\right)\right) \cdot\left(\sum_{i} c_{i} X^{i}\right) & =\left(\sum_{k}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) X^{k}\right) \cdot\left(\sum_{i} c_{i} X^{i}\right) \\
& =\sum_{l}\left(\sum_{k=0}^{l}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) c_{l-k}\right) X^{l} \\
& =\sum_{l}\left(\sum_{k=0}^{l} \sum_{i=0}^{k} a_{i} b_{k-i} c_{l-k}\right) X^{l} \\
& =\sum_{l}\left(\sum_{i=0}^{l} \sum_{k=i}^{l} a_{i} b_{k-i} c_{l-k}\right) X^{l} \\
& =\sum_{l}\left(\sum_{i=0}^{l} a_{i}\left(\sum_{k==}^{l} b_{k-i} c_{l-k}\right)\right) X^{l} \\
& =\sum_{l}\left(\sum_{i=0}^{l} a_{i}\left(\sum_{k=0}^{l i} b_{k} c_{l-i-k}\right)\right) X^{l} \\
& =\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\sum_{j}\left(\sum_{k=0}^{j} b_{k} c_{j-k}\right) X^{j}\right) \\
& =\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\left(\sum_{i} b_{i} X^{i}\right) \cdot\left(\sum_{i} c_{i} X^{i}\right)\right)
\end{aligned}
$$

- Distributivity:

$$
\begin{aligned}
\left(\left(\sum_{i} a_{i} X^{i}\right)+\left(\sum_{i} b_{i} X^{i}\right)\right) \cdot\left(\sum_{i} c_{i} X^{i}\right) & =\left(\sum_{i}\left(a_{i}+b_{i}\right) X^{i}\right) \cdot\left(\sum_{i} c_{i} X^{i}\right) \\
& =\sum_{k}\left(\sum_{i=0}^{k}\left(a_{i}+b_{i}\right) c_{k-i}\right) X^{k} \\
& =\sum_{k}\left(\sum_{i=0}^{k}\left(a_{i} c_{k-i}+b_{i} c_{k-i}\right)\right) X^{k} \\
& =\sum_{k}\left(\sum_{i=0}^{k}\left(a_{i} c_{k-i}\right)+\sum_{i=0}^{k}\left(b_{i} c_{k-i}\right)\right) X^{k} \\
& =\sum_{k}\left(\sum_{i=0}^{k} a_{i} c_{k-i}\right) X^{k}+\sum_{k}\left(\sum_{i=0}^{k} b_{i} c_{k-i}\right) X^{k} \\
& =\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\sum_{i} c_{i} X^{i}\right)+\left(\sum_{i} b_{i} X^{i}\right) \cdot\left(\sum_{i} c_{i} X^{i}\right)
\end{aligned}
$$

- Commutativity: $\left(\sum_{i} a_{i} X^{i}\right) \cdot\left(\sum_{i} b_{i} X^{i}\right)=\sum_{k}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right) X^{k}=\sum_{k}\left(\sum_{i=0}^{k} b_{k-i} a_{i}\right) X^{k}=$ $\sum_{k}\left(\sum_{j=0}^{k} b_{j} a_{k-j}\right) X^{k}=\left(\sum_{i} b_{i} X^{i}\right) \cdot\left(\sum_{i} a_{i} X^{i}\right)$.
- Multiplicative identity: let $\delta_{i}=1$ if $i=0$ and 0 otherwise, we have ($\sum_{i} a_{i} X^{i}$). $\left(\sum_{i} \delta_{i} X^{i}\right)=\sum_{k}\left(\sum_{i=0}^{k} a_{i} \delta_{k-i}\right) X^{k}=\sum_{k}\left(\sum_{i=0}^{k-1} a_{i} \cdot 0+a_{k} \cdot 1\right) X^{k}=\sum_{k} a_{k} X^{k} ;$

2. Show that $S=\sum_{i} s_{i} X^{i}$ is a unit if and only if $s_{0} \neq 0$.

Solution: Assume that S is a unit. There exists $T=\sum_{i} t_{i} X^{i}$ such that $\sum_{k}\left(\sum_{i=0}^{k} s_{i} t_{k-i}\right) X^{k}=$ $S T=1$. The constant coefficient of the series on the left is $\sum_{i=0}^{0} s_{i} t_{k-i}=s_{0} t_{0}$ which must be equal to 1 , so s_{0} is a unit in K and $s_{0} \neq 0$.
Conversely, assume that $s_{0} \neq 0$. We are looking for $T=\sum_{i} t_{i} X^{i}$ such that $1=S T=$ $\sum_{k}\left(\sum_{i=0}^{k} s_{i} t_{k-i}\right) X^{k}$, i.e. $s_{0} t_{0}=1$ and for all $k>0, \sum_{i=0}^{k} s_{i} t_{k-i}=0$. We define t_{k} by induction on k : $t_{0}=s_{0}^{-1}$ and $t_{k+1}=-s_{0}^{-1} \sum_{i=0}^{k} s_{k+1-i} t_{i}$. It is easy to check that this (the unique) solution to the above equations.
3. Show that $K[[X]] /(X)$ is isomorphic to K.

Solution: Let $f\left(\sum_{i} a_{i} X^{i}\right)=a_{0} \in K$. It is easy to check that f is a ring homomorphism. Its kernel is the set of series whose constant coefficient is 0 . One can check that $\sum_{i>0} a_{i} X^{i}=X \cdot \sum_{i} a_{i+1} X^{i}$, so series whose constant coefficient is 0 are all multiple of X. Conversely, $X \sum_{i} a_{i} X^{i}=\sum_{i>0} a_{i-1} X^{i}$ so multiples of X have constant coefficient 0 . It follows that the kernel of f is exactly (X). Moreover, $f\left(a X^{0}+\sum_{i>0} a_{i} X^{i}\right)=a$ so f is surjective. By the first isomorphism theorem, we get that $K[[X]] /(X) \cong K$.
4. Show that every non zero ideal in $K[[X]]$ is of the form $\left(X^{n}\right)$ for some $n \in \mathbb{Z} \geqslant 0$.

Solution: Let I be an ideal. Let $n \in \mathbb{Z} \geqslant 0$ be the smallest integer such that $X^{n} \in I$. Then $\left(X^{n}\right) \subseteq I$. Conversely, pick $S=\sum_{i} s_{i} X^{i} \in I$. Let i_{0} be minimal such that $s_{i} \neq 0$. Then $S=\sum_{i \geqslant i_{0}} s_{i} X^{i}=X^{i_{0}} \sum_{i} s_{i+i_{0}} X^{i}$. Note that $s_{i_{0}} \neq 0$ so $S^{\star}=\sum_{i} s_{i+i_{0}} X^{i}$ has non zero constant coefficient and therefore is a unit. So $X^{i_{0}}=\left(S^{\star}\right)^{-a} S \in I$ and, by minimality $i_{0} \geqslant n$. It follows that $S=X^{n} X^{i_{0}-n} S^{\star} \in\left(X^{n}\right)$ and hence $I=\left(X^{n}\right)$.

