Solutions to homework 8

Due November 8th

Problem 1 (nilpotent elements and radical ideals) :
Let R be a unitary commutative ring. An element $x \in R$ is said to be nilpotent if there exists $n \in \mathbb{Z}_{>0}$ such that $x^{n}=0$.

1. What are the nilpotent elements in $\mathbb{Z} / 36 \mathbb{Z}$?

Solution: We have $36=2^{2} \cdot 3^{2}$. Let $x \in \mathbb{Z}, \bar{x}$ is nilpotent in $\mathbb{Z} / 36 \mathbb{Z}$ if for n big enough $36 \mid x^{n}$. So x^{n} is divisble by 2 and 3 and because 2 and 3 are prime, x itself is divisible by 6 . Conversely, if x is divisible by $6, x^{2}$ is divisible by 36 and \bar{x} is nilpotent in $\mathbb{Z} \bmod 36 \mathbb{Z}$. So the nilpotent elements in $\mathbb{Z} / 36 \mathbb{Z}$ are $\overline{0}, \overline{6}, \overline{12}, \overline{18}, \overline{24}$ and $\overline{30}$.
2. Show that $\{x \in R: x$ nilpotent $\}$ is an ideal. It is called the nilradical of R.

Solution: Let $x, y \in R$ be nilpotent and let $n, m \in \mathbb{Z}_{>0}$ be such that $x^{n}=0=y^{m}$. Then $(x+y)^{m+n}=\sum_{i+j=m+n}\binom{i+j}{i} x^{i} y^{j}$. But if $i+j=m+n$ and both $i, j \geqslant 0$, then either $i \geqslant m$ or $j \geqslant n$. It follows that $x^{i} y^{j}=0$ and $(x+y)^{m+n}=0$, so $x+y$ is nilpotent. Now pick $a \in R .(a x)^{n}=a^{n} x^{n}=0$. It follows that the set of nilpotent elements in R is an ideal.
3. Assume that x is nilpotent, show that $1-x$ is a unit.

Solution: Let $n \in \mathbb{Z}_{>0}$ be such that $x^{n}=0$. We have $1=1-x^{n}=(1-x)\left(\sum_{i=0}^{n-1} x^{i}\right)$ so $1-x$ is a unit in R.
4. Assume that x is nilpotent, show that for all $u \in R^{\star}, u+x$ is a unit.

Solution: Because the set of nilpotent elements is an ideal, $-u^{-1} x$ is nilpotent. By the previous question $1+u^{-1} x$ is a unit and hence so is $u\left(1+u^{-1} x\right)=u+x$.
5. (Harder) Let $S \subseteq R \backslash\{0\}$ be closed under multiplication. Show that there exists a prime ideal $\mathfrak{p} \subseteq R$ such that $\mathfrak{p} \cap S=\varnothing$.

Solution: Adding it, we may assume that S contains 1 . The ring R_{S} is not the trivial ring (because $0 \notin S$) so there exists a maximal (and hence prime) ideal $\mathfrak{q} \subseteq R_{S}$. Let $\mathfrak{p}=\mathfrak{q} \cap R$ (where R is identified with a subring of R_{S} in the usual way). Then \mathfrak{p} is a prime ideal (you can check it by hand or apply question 9 to \mathfrak{q} and the inclusion morphism $R \rightarrow R_{S}$). Moreover, if $x \in \mathfrak{p} \cap S$, then $x \in\left(R_{S}\right)^{\star} \cap \mathfrak{q}$ and $\mathfrak{q}=R_{S}$ contradicting the fact that it is a proper ideal. So $\mathfrak{p} \cap S=\varnothing$.
6. Let $x \in R$ not be nilpotent. Show that there exists a prime ideal $\mathfrak{p} \subseteq R$ such that $x \notin \mathfrak{p}$.

Hint: Use the previous question!
Solution: Let $S=\left\{x^{n}: n \in \mathbb{Z}_{\leqslant 0}\right\}$, then S is closed under multiplication and does not contain 0 . So, by the previous question, there exist a prime ideal $\mathfrak{p} \subseteq R$ such that $S \cap \mathfrak{p}=\varnothing$. In particular, $x \notin \mathfrak{p}$.
7. Let N be the nilradical of R, show that

$$
N=\bigcap_{\mathfrak{p} \subseteq R \text { prime }} \mathfrak{p}
$$

Solution: Let $\mathfrak{p} \subseteq R$ be a prime ideal. Let us show by induction on $n>0$ that if $x^{n} \in \mathfrak{p}$ then $x \in \mathfrak{p}$. If $n=1$, this is obvious. Now assume it is true for n and $x^{n+1}=x x^{n} \in \mathfrak{p}$. Then, because \mathfrak{p} is prime, we either have $x \in \mathfrak{p}$ or $x^{n} \in \mathfrak{p}$ in which case, by induction, $x \in \mathfrak{p}$.

If follows that if n is nilpotent, $x^{n}=0 \in \mathfrak{p}$ for some n, so $x \in \mathfrak{p}$. We have shown that
 be nilpotent. By the previous question, there exists a prime $\mathfrak{p} \subseteq R$ such that $x \notin \mathfrak{p}$, so $x \notin \bigcap_{\mathfrak{p} \subseteq R \text { prime }} \mathfrak{p}$. So $N=\bigcap_{\mathfrak{p} \subseteq R \text { prime }} \mathfrak{p}$.
8. Let $I \subseteq R$ be an ideal. We define $\sqrt{I}:=\left\{x \in R: x^{n} \in\right.$ for some $\left.n \in \mathbb{Z}_{>0}\right\}$. Show that $\sqrt{I} \subseteq R$ is an ideal.

Solution: Let $x, y \in R$ and $n, m \in \mathbb{Z}_{>0}$ such that $x^{n}, y^{m} \in I$. Then $(x+y)^{m+n}=$ $\sum_{i+j=m+n}\binom{i+j}{i} x^{i} y^{j}$. But if $i+j=m+n$ and both $i, j \geqslant 0$, then either $i \geqslant m$ or $j \geqslant n$. It follows that $x^{i} y^{j} \in I$ and $(x+y)^{m+n} \in I$, so $x+y \in \sqrt{I}$. Now pick $a \in R$. $(a x)^{n}=a^{n} x^{n} \in I$. It follows that \sqrt{I} is an ideal.
9. Let $f: R \rightarrow S$ be a unitary ring homomorphism, $\mathfrak{p} \subseteq S$ be a prime ideal. Show that $f^{-1}(\mathfrak{p}) \subseteq R$ is a prime ideal.

Solution: We know that $f^{-1}(\mathfrak{p}) \subseteq R$ is an ideal. Because f is unitary, $f(1)=1 \notin \mathfrak{p}$ so $f^{-1}(\mathfrak{p})$ is a proper ideal. Let us show that it is prime. Let $x, y \in R$ be such that $x y \in f^{-1}(\mathfrak{p})$, i.e. $f(x y)=f(x) f(y) \in \mathfrak{p}$. Because \mathfrak{p} is prime, it follows that either $f(x) \in \mathfrak{p}\left(\right.$ and $\left.x \in f^{-1}(\mathfrak{p})\right)$ of $f(y) \in \mathfrak{p}\left(\right.$ and $\left.y \in f^{-1}(\mathfrak{p})\right)$.
10. Let $I \subseteq R$ be an ideal and $\pi: R \rightarrow R / I$ be the canonical projection. Let $N_{I} \subseteq R / I$ be its nilradical. Show that $\sqrt{I}=\pi^{-1}\left(N_{I}\right)$.

Solution: We have $x \in \sqrt{I}$ if and only if $x^{n} \in I$ for some I if and only if $\pi(x)^{n}=$ $\pi\left(x^{n}\right)=x^{n}+I=I$ if and only if $\pi(x) \in N_{I}$ if and only if $x \in \pi^{-1}\left(N_{I}\right)$.
11. Let $I \subseteq R$ be an ideal. Show that

$$
\sqrt{I}=\bigcap_{\substack{I \subseteq \mathfrak{p} \subseteq R \\ \mathfrak{p} \text { prime }}} \mathfrak{p} .
$$

Solution: Let $\mathfrak{p} \subseteq R$ be a prime ideal containing and $x \in R$ be such that $x^{n} \in I \subseteq \mathfrak{p}$. By the computation in question 7 , we have $x \in \mathfrak{p}$. There only remains to show that if $x \notin \sqrt{I}$, there exists a prime ideal containing I that does not contain x. By the previous question, $\pi(x) \notin N_{I}$. So, by question 7 , there exists a prime $\mathfrak{q} \subseteq R / I$ such that $\pi(x) \notin \mathfrak{q}$. Let $\mathfrak{p}=\pi^{-1}(\mathfrak{q})$. Then, by question $9, \mathfrak{p}$ is a prime ideal. Also, $I=\pi^{-1}(0) \subseteq \pi^{-1}(\mathfrak{q})=\mathfrak{p}$ and $x \notin \mathfrak{p}$.

