Homework 8

Due November 8th

The questions indicated as (Harder) are optional and will not be taken in account in the grade.

Problem 1 (nilpotent elements and radical ideals) :

Let R be a unitary commutative ring. An element $x \in R$ is said to be nilpotent if there exists $n \in \mathbb{Z}_{>0}$ such that $x^n = 0$.

- 1. What are the nilpotent elements in $\mathbb{Z}/36\mathbb{Z}$?
- 2. Show that $\{x \in R : x \text{ nilpotent}\}$ is an ideal. It is called the nilradical of R.
- 3. Assume that x is nilpotent, show that 1 x is a unit.
- 4. Assume that x is nilpotent, show that for all $u \in \mathbb{R}^*$, u + x is a unit.
- 5. (Harder) Let $S \subseteq R \setminus \{0\}$ be closed under multiplication. Show that there exists a prime ideal $\mathfrak{p} \subseteq R$ such that $\mathfrak{p} \cap S = \emptyset$.
- 6. Let $x \in R$ not be nilpotent. Show that there exists a prime ideal $\mathfrak{p} \subseteq R$ such that $x \notin \mathfrak{p}$.

Hint: Use the previous question!

7. Let N be the nilradical of R, show that

$$N = \bigcap_{\mathfrak{p} \subseteq R \text{ prime}} \mathfrak{p}.$$

- 8. Let $I \subseteq R$ be an ideal. We define $\sqrt{I} := \{x \in R : x^n \in I \text{ for some } n \in \mathbb{Z}_{>0}\}$. Show that $\sqrt{I} \subseteq R$ is an ideal.
- 9. Let $f: R \to S$ be a unitary ring homomorphism, $\mathfrak{p} \subseteq S$ be a prime ideal. Show that $f^{-1}(\mathfrak{p}) \subseteq R$ is a prime ideal.
- 10. Let $I \subseteq R$ be an ideal and $\pi : R \to R/I$ be the canonical projection. Let $N_I \subseteq R/I$ be its nilradical. Show that $\sqrt{I} = \pi^{-1}(N_I)$.
- 11. Let $I \subseteq R$ be an ideal. Show that

$$\sqrt{I} = \bigcap_{\substack{I \subseteq \mathfrak{p} \subseteq R \\ \mathfrak{p} \text{ prime}}} \mathfrak{p}.$$