Homework 9

Due November 15th

The questions indicated as (Harder) are optional and will not be taken in account in the grade.

Problem 1:

Let $D \in \mathbb{Z}$ and let $\alpha \in \mathbb{C}$ be such that $\alpha^2 = D$.

- 1. Show that $\mathbb{Z}[\alpha] = \{a + b\alpha : a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .
- 2. If $D = 1 \mod 4$, show that $\mathbb{Z}\left[\frac{1+\alpha}{2}\right] = \left\{a + b\frac{1+\alpha}{2} : a, b \in \mathbb{Z}\right\}$ is a subring of \mathbb{C} that contains $\mathbb{Z}[\alpha]$.
- 3. Let $\beta = \frac{1+\alpha}{2}$ and $\overline{\beta} = \frac{1-\alpha}{2}$ if $D = 1 \mod 4$ and $\beta = \alpha$, $\overline{\beta} = -\alpha$ otherwise. We define $N(a + \beta b) = (a + \beta b) \cdot (a + \overline{\beta} b)$. Show that for all $x \in \mathbb{Z}[\beta]$, $N(x) \in \mathbb{Z}$ and if D < 0, then $N(x) = |x|^2 \ge 0$ where |x| is the complex norm.
- 4. Show that for all $x, y \in \mathbb{Z}[\beta]$, N(xy) = N(x)N(y).
- 5. Show that $x \in \mathbb{Z}[\beta]$ is a unit if and only if $N(x) \in \{1, -1\}$.
- 6. Let us now assume that D = -3, show that for all $x \in \mathbb{C}$ there exists $a \in \mathbb{Z}[\beta]$ such that |x a| < 1.
- 7. Let us still assume that D = -3, show that $\mathbb{Z}[\beta]$ is Euclidian (with respect to N).
- 8. (Harder) Assume D < 0 and $D = 1 \mod 4$, show that for all $x \in \mathbb{C}$ there exists $a \in \mathbb{Z}[\beta]$ such that $|x a| \leq \frac{1+|D|}{4\sqrt{|D|}}$. Conclude that, if $D \in \{-3, -7, -11\}, \mathbb{Z}[\beta]$ is Euclidian with respect to N.

Problem 2:

Let R be an integral domain. We say that R is Bezout domain if for all $a, b \in R$, there exists $c \in R$ such that (a, b) = (c).

- 1. Show that the following are equivalent:
 - a) R is a Bezout domain;
 - b) Every finitely generated ideal of R is principal;
 - c) For every $a, b \in R$, a greatest common divisor d of a and b exists and there exists $u, v \in R$ such that d = ua + bv.
- 2. Assume that R is a UFD and a Bezout domain. Let $I \subset R$ be a proper ideal and let $a \in I$ be such that the factorization of a into irreducibles has a minimal number of factors, among elements of $I \setminus \{0\}$. Show that I = (a).
- 3. Show that R is a PID if and only if it is both a UFD and a Bezout domain.