Homework 9

Due November 15th

The questions indicated as (Harder) are optional and will not be taken in account in the grade.

Problem 1:

Let $D \in \mathbb{Z}$ and let $\alpha \in \mathbb{C}$ be such that $\alpha^{2}=D$.

1. Show that $\mathbb{Z}[\alpha]=\{a+b \alpha: a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C}.
2. If $D=1 \bmod 4$, show that $\mathbb{Z}\left[\frac{1+\alpha}{2}\right]=\left\{a+b \frac{1+\alpha}{2}: a, b \in \mathbb{Z}\right\}$ is a subring of \mathbb{C} that contains $\mathbb{Z}[\alpha]$.
3. Let $\beta=\frac{1+\alpha}{2}$ and $\bar{\beta}=\frac{1-\alpha}{2}$ if $D=1 \bmod 4$ and $\beta=\alpha, \bar{\beta}=-\alpha$ otherwise. We define $N(a+\beta b)=(a+\beta b) \cdot(a+\bar{\beta} b)$. Show that for all $x \in \mathbb{Z}[\beta], N(x) \in \mathbb{Z}$ and if $D<0$, then $N(x)=|x|^{2} \geqslant 0$ where $|x|$ is the complex norm.
4. Show that for all $x, y \in \mathbb{Z}[\beta], N(x y)=N(x) N(y)$.
5. Show that $x \in \mathbb{Z}[\beta]$ is a unit if and only if $N(x) \in\{1,-1\}$.
6. Let us now assume that $D=-3$, show that for all $x \in \mathbb{C}$ there exists $a \in \mathbb{Z}[\beta]$ such that $|x-a|<1$.
7. Let us still assume that $D=-3$, show that $\mathbb{Z}[\beta]$ is Euclidian (with respect to N).
8. (Harder) Assume $D<0$ and $D=1 \bmod 4$, show that for all $x \in \mathbb{C}$ there exists $a \in \mathbb{Z}[\beta]$ such that $|x-a| \leqslant \frac{1+|D|}{4 \sqrt{|D|}}$. Conclude that, if $D \in\{-3,-7,-11\}, \mathbb{Z}[\beta]$ is Euclidian with respect to N.

Problem 2 :

Let R be an integral domain. We say that R is Bezout domain if for all $a, b \in R$, there exists $c \in R$ such that $(a, b)=(c)$.

1. Show that the following are equivalent:
a) R is a Bezout domain;
b) Every finitely generated ideal of R is principal;
c) For every $a, b \in R$, a greatest common divisor d of a and b exists and there exists $u, v \in R$ such that $d=u a+b v$.
2. Assume that R is a UFD and a Bezout domain. Let $I \subset R$ be a proper ideal and let $a \in I$ be such that the factorization of a into irreducibles has a minimal number of factors, among elements of $I \backslash\{0\}$. Show that $I=(a)$.
3. Show that R is a PID if and only if it is both a UFD and a Bezout domain.
