Solutions to homework 10

Due November 29th

Problem 1:

1. Let $P_{n}=X^{n}-1$. Let $\mu_{n} \subseteq \mathbb{C}$ be the set of roots of P_{n} in \mathbb{C}. The elements of μ_{n} are called the n-th roots of the unity. Show that

$$
P_{n}=\prod_{\zeta \in \mu_{n}} X-\zeta
$$

Solution: Since each element of μ_{n} is a root of P_{n}, the polynomial $\prod_{\zeta \epsilon \mu_{n}} X-\zeta$ divides P_{n}. But $\mu_{n}=\left\{e^{\frac{2 i k \pi}{n}}: 0 \leqslant k<n\right\}$ has size n so those two polynomials have the same degree. It follows that there exists $u \in \mathbb{C}^{\star}$ such that $P_{n}=u \cdot \prod_{\zeta \in \mu_{n}} X-\zeta$. But the coefficient of X^{n} in both P_{n} and $\prod_{\zeta \in \mu_{n}} X-\zeta$ is 1 , so $u=1$ and $P_{n}=\prod_{\zeta \epsilon \mu_{n}} X-\zeta$. Note that μ_{n} is in fact a cyclic subgroup of \mathbb{C}^{\star}.
2. A $\zeta \in \mu_{n}$ is said to be primitive if it is not a d-th root of the unity for any $d<n$. Show that there are $\varphi(n)$ primitive n-th roots of the unity, where $\varphi(n)$ is Euler's totient function.

Solution: Pick $\zeta=e^{\frac{2 i k \pi}{n}} \in \mu_{n}$. It is a root of P_{d} for some $d<n$ if and only if $l:=\operatorname{gcd}(n, k) \neq 1$ (and in that case it is a root of $P_{\frac{n}{l}}$). Indeed $\zeta^{\frac{n}{l}}=e^{\frac{2 i k \pi}{n} \cdot \frac{n}{l}}=e^{\frac{2 i k \pi}{l}}=1$ if and only if $\frac{k}{l} \in \mathbb{Z}$. Since $\varphi(n)$ is, by definition, the number of $0 \leqslant k<n$ that are coprime with n, we do have $\varphi(n)$ primitive n-th roots of the unity.
3. Let

$$
\Phi_{n}(X)=\prod_{\zeta \in \mu_{n}} \prod_{\text {primitive }} X-\zeta
$$

Show that $P_{n}=\prod_{d \mid n} \Phi_{d}$. Conclude that $\Phi_{n}(X) \in \mathbb{Z}[X]$.
Solution: Pick any $\zeta \in \mu_{n}$, Let $d \mid n$ be the order of ζ. Then ζ is a primitive $d-$ th root of the unity. Note also that ζ is a primitive d-th root for a unique d so μ_{n} is the disjoint union of $\mu_{n, d}=\left\{\zeta \in \mu_{n}: \zeta\right.$ is a primitive d-th root $\}$ for $d \mid n$. So $P_{n}(X)=\prod_{d \mid n} \prod_{\zeta \epsilon \mu_{n, d}}(X-\zeta)$. Note also that if $d \mid n$ and ζ is a d-th root of the unity (primitive or not), then $\zeta^{n}=1$, so all primitive d-th roots of the unity are in $\mu_{n, d}$ and $\prod_{\zeta \epsilon \mu_{n, d}}(X-\zeta)=\Phi_{d}(X)$ by definition. It follows that $P_{n}=\prod_{d \mid n} \Phi_{d}$.
Let us first prove that if $P=U V$ where $P, U \in \mathbb{Q}[X]$ and $V \in \mathbb{C}[X]$, then $V \in \mathbb{Q}[X]$. Indeed, let $P=U V^{\prime}+R$ be its Euclidean division in $\mathbb{Q}[X]$, then it also a Euclidean division in $\mathbb{C}[X]$. But $P=U V$ is also a Euclidean division in $\mathbb{C}[X]$ and we saw that Euclidean division in $\mathbb{C}[X]$ is unique. It follows that $V=V^{\prime} \in \mathbb{Q}[X]$.
Because $\Phi_{n} \prod_{d \mid n, d<n} \Phi_{d}=P_{n} \in \mathbb{Q}[X]$, we obtain, by induction on n, that $\Phi_{n} \in \mathbb{Q}[X]$ for all n. It now follows from Gauss's lemma (and induction), that there exists $c_{d} \in \mathbb{Q}^{\star}$ such that $c_{d} \Phi_{d} \in \mathbb{Z}[X]$ and $\prod_{d \mid n} c_{d} \Phi_{d}=P_{n}$. It follows (looking at he coefficient of X^{n}), that $\prod_{d \mid n} c_{d}=1$. Note also that, since the coefficient of $X^{\left|\mu_{d}\right|}$ in $c_{d} \Phi_{d}$ is c_{d}, we must have that $c_{d} \in \mathbb{Z}$ and hence, each of the c_{d} is invertible in \mathbb{Z}. It follows that $\Phi_{n}=c_{n}^{-1} c_{n} \Phi_{n} \in \mathbb{Z}[X]$.
4. (Harder) Let p be a prime number. Show that $\Phi_{p}(X+1)$ is irreducible in $\mathbb{Z}[X]$. Conclude that Φ_{p} is irreducible in $\mathbb{Z}[X]$.

Solution: We have $P_{p}=X^{p}-1=(X-1) \sum_{i=0}^{p-1} X^{i}=\Phi_{1} \cdot \Phi_{p}$ so $\Phi_{p}=\sum_{i=0}^{p-1} X^{i}=\frac{X^{p}-1}{X-1}$. So $\Phi_{p}(X+1)=\frac{(X+1)^{p}-1}{X}=\frac{\sum_{i=0}^{p}\binom{p}{i} X^{i}-1}{X}=\sum_{i=0}^{p-1}\binom{p}{i+1} X^{i}$. The dominant coefficient is $\binom{p}{p}=1$. The other coefficients are equal to $\binom{p}{i+1}=\frac{p!}{(i+1)!(p-i-1)!}$ for $0<i+1<p$ and they are all multiples of p. Indeed, Let p appears in the prime decomposition of p ! but, since $i+1, p-i-1<p$, it does not appear in the prime decomposition of the numerator. It follows that p is a prime factor of $\binom{p}{i+1}$ (which we know is an integer!). Moreover, the constant term is $\binom{p}{1}=p$ is not a multiple of p^{2}. It follows that we can apply the Eisenstein criterion and that $\Phi_{p}(X+1)$ is irreducible in $\mathbb{Z}[X]$.
If $\Phi_{d}=A B$ where $A, B \in \mathbb{Z}[X]$, then $\Phi_{d}(X+1)=A(X+1) B(X+1)$, where $A(X+1)$, $B(X+1) \in \mathbb{Z}[X]$. By the previous question, we may assume that $A(X+1)$ is a unit (in particular, it is a constant polynomial). So $A=A(X+1)$ is also a unit.

Problem 2:

Let K be a field. For all $n \in \mathbb{Z}$, let $\bar{n}=n \cdot 1_{K} \in K$. For all $P=\sum_{i=0}^{n} c_{i} X^{i} \in \mathbb{Z}[X]$, let $\bar{P}=\sum_{i=0}^{n} \overline{c_{i}} X^{i} \in K[X]$.

1. Show that, if $a \in K^{\star}$ is order n, then $\bar{\Phi}_{n}(a)=0$.

Solution: If a is order n, then we have $a^{n}=1$, i.e. $\bar{P}_{n}(a)=0$. If $\bar{\Phi}_{d}(a)=0$ for some $d<n$, then since $\bar{\Phi}_{d}$ divides \bar{P}_{d}, we also have $\bar{P}_{d}(a)=0$ and hence $a^{d}=1$, contradicting the fact that the order of a is n. Since $\bar{P}_{n}=\prod_{d \mid n} \bar{\Phi}_{d}, \bar{\Phi}_{d}(a) \neq 0$ if $d<n, \bar{P}_{n}(a)=0$ and K, being a field, is integral, we must have $\bar{\Phi}_{n}(a)=0$.
2. Until the end of that problem, we will assume that $|K|=q<\infty$. Show that there are at most $\sum_{d \mid q-1, d<q-1} \operatorname{deg}\left(\Phi_{d}\right)$ elements in K^{\star} which are not order $q-1$.

Solution: The group K^{\star} is order $q-1$. So, by Lagrange, the order of any element in K^{\star} divides $q-1$. If the order of $a \in K^{\star}$ is $d<q-1$, then $\bar{\Phi}_{d}(a)=0$ and since $\bar{\Phi}_{d}$ can have at most $\operatorname{deg}\left(\bar{\Phi}_{d}\right)=\operatorname{deg}\left(\Phi_{d}\right)$ roots, it follows that there are at most $\sum_{d \mid q-1, d<q-1} \operatorname{deg}\left(\Phi_{d}\right)$ elements in K^{\star} which are not order $q-1$.
3. Show that K^{\star} is cyclic.

Solution: Since $P_{q-1}=\prod_{d \mid q-1} \Phi_{d}$, we have $q-1=\operatorname{deg}\left(P_{q-1}\right)=\sum_{d \mid q-1} \operatorname{deg}\left(\Phi_{d}\right)$, so $\sum_{d \mid q-1, d<q-1} \operatorname{deg}\left(\Phi_{d}\right)=q-1-\operatorname{deg}\left(\Phi_{q-1}\right)<q-1$. It follows that there must be an element of order $q-1$ in K^{\star} which is therefore cyclic.

Problem 3 :

Recall that $\mathbb{Z}[i]$ is the subring of \mathbb{C} consisting of elements of the form $a+i b$ where a, $b \in \mathbb{Z}$. Let $p \in \mathbb{Z}$ be prime. Recall that $\mathbb{Z}[i]$ is a Euclidian domain.

1. Show that $\mathbb{Z}[X] /\left(p, X^{2}+1\right), \mathbb{Z}[i] /(p)$ and $(\mathbb{Z} / p \mathbb{Z})[X] /\left(X^{2}+1\right)$ are isomorphic.

Solution: Let $f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[i]$ be the evaluation map at i (to be precise, it is the restriction to $\mathbb{Z}[X]$ of the evaluation map at i from $\mathbb{C}[X]$ into $\mathbb{C})$. Since $\mathbb{Z}[i]$ is the subring of \mathbb{C} generated by \mathbb{Z} and i, we do have $f(\mathbb{Z}[X])=\mathbb{Z}[i]$. Also let π_{1} be the reduction map $\mathbb{Z}[i] \rightarrow \mathbb{Z}[i] /(p)$ (we have $\pi_{1}(x)=x+(p)$). Then
$\theta:=\pi_{1} \circ f: \mathbb{Z}[X] \rightarrow \mathbb{Z}[i] /(p)$ is a ring homomorphism. Since both f and π_{1} are surjective, so is θ. Let us show that the kernel of θ is $\left(p, X^{2}+1\right)$. We have $f\left(X^{2}+1\right)=i^{2}+1=0$, so $\theta\left(X^{2}+1\right)=0$. Also $\theta(p)=\pi_{1}(p)=0$ so $\left(X^{2}+1, p\right) \subseteq \operatorname{ker}(\theta)$. Conversely, pick any $P \in \mathbb{Z}[X]$ such that $\theta(P)=0$, then $f(P) \in \operatorname{ker}\left(\pi_{1}\right)=(p)$. By the same proof as in $\mathbb{Q}[X]$, we can show that there exist $Q, R \in \mathbb{Z}[X]$ such that $P=\left(X^{2}+1\right) Q+R$ and $\operatorname{deg}(R) \leqslant 1$ (note that the dominant coefficient of $X^{2}+1$ is 1 so we never have to do any division when doing the long division). Then $f(P)=R(i)$. If $R(i)=a+i b \in(p)$, then $a+i b=p(c+i d)$ and thus $a=p c$ and $b=p d$. It follows that $R=p S$ for some $S \in Z[X]$. Since $P=\left(X^{2}+1\right) Q+p S$, we do have that $P \in\left(X^{2}+1, p\right)$. By the first isomorphism theorem, we have that $\mathbb{Z}[X] /\left(p, X^{2}+1\right)$ is isomorphic to $\mathbb{Z}[i] / p$.
Now, let $g: \mathbb{Z}[X] \rightarrow(\mathbb{Z} / p \mathbb{Z})[X]$ be the reduction map on the coefficients and $\pi_{2}:(\mathbb{Z} / p \mathbb{Z})[X] \rightarrow(\mathbb{Z} / p \mathbb{Z})[X] /\left(X^{2}+1\right)$ be the reduction map. Then $\chi:=\pi_{2} \circ g:$ $\mathbb{Z}[X] \rightarrow(\mathbb{Z} / p \mathbb{Z})[X] /\left(X^{2}+1\right)$ is a surjective ring homomorphism. Once again, $\chi(p)=\pi_{2}(g(p))=\pi_{2}(0)=0$ and $\chi\left(X^{2}+1\right)=\pi_{2}\left(X^{2}+1\right)=0$, so $\left(p, X^{2}+1\right) \subseteq \operatorname{ker}(\chi)$. Conversely, pick some $P \in \operatorname{ker}(\chi)$ and write $P=\left(X^{2}+1\right) Q+R$ where $\operatorname{deg}(R) \leqslant 1$. We have $\chi(P)=\pi_{2}\left(X^{2}+1\right) \chi(Q)+\pi_{2}(g(R))=\pi_{2}(g(R))=0$. So $g(R) \in\left(X^{2}+1\right)$. Since $\operatorname{deg}(g(R)) \leqslant 1<\operatorname{deg}\left(X p^{2}+1\right), g(R)=0$ and every coefficient of R is divisible by p. So $R=p S$ for some $S \in \mathbb{Z}[X]$ and $P \in\left(X^{2}+1, p\right)$. By the first isomorphism theorem, $(\mathbb{Z} / p \mathbb{Z})[X] /\left(X^{2}+1\right)$ is isomorphic $\mathbb{Z}[X] /\left(p, X^{2}+1\right)$.
2. Assume that $p \neq 2$, show that the following are equivalent:
a) -1 is a square in $(\mathbb{Z} / p \mathbb{Z})$;
b) there is an element of order 4 in $(\mathbb{Z} / p \mathbb{Z})^{\star}$;
c) $4 \mid p-1$.

Solution: If $a^{2}=1 \bmod p$, then $a^{4}=1$ and since a is not order two, it is order four. So a) implies b). Conversely, if $a^{4}=1$ then $a^{2}=1$ or -1 which are the only two roots of $X^{2}-1$. But if a is order 4 , then $a^{2} \neq 1$ so $a^{2}=-1$. We have proved that b) implies a). Finally since $(\mathbb{Z} / p \mathbb{Z})^{\star}$ is cyclic of order $\left.p-1, \mathrm{~b}\right)$ and c) are equivalent.
3. Assume that $p=x y$ for some $x, y \in \mathbb{Z}[i]$. Show that $|x|^{2} \in\left\{1, p, p^{2}\right\}$, here $|x|$ denotes the complex norm.

Solution: We have $|p|^{2}=|x|^{2}|y|^{2}$. Also, if $x \in \mathbb{Z}[i]$, then $|x|^{2} \in \mathbb{Z}$, so $|x|^{2}$ divides p^{2} in \mathbb{Z}. It follows that (since it is positive) $|x|^{2} \in\left\{1, p, p^{2}\right\}$.
4. Show that the following are equivalent:
a) $p=2$ or $p \equiv 1 \bmod 4$;
b) p is reducible in $\mathbb{Z}[i]$;
c) there exist $a, b \in \mathbb{Z}$ such that $p=a^{2}+b^{2}$.

Solution: Since $\mathbb{Z}[i]$ is a PID, p is irreducible if and only if p is prime, if and only if p is maximal, if and only if $\mathbb{Z}[i] / p \cong(\mathbb{Z} / p \mathbb{Z})[X] /\left(X^{2}+1\right)$ is a field, if and only if $X^{2}+1$ is irreducible in $(\mathbb{Z} / p \mathbb{Z})[X]$, if and only if $X^{2}+1$ has no root in $\mathbb{Z} / p \mathbb{Z}$. If $p=2$, then $1^{2}+1 \equiv 2 \equiv 0 \bmod p$. If $p \neq 2$, we saw in a previous question that -1 is a square in $\mathbb{Z} / p \mathbb{Z}$ if and only if $p \equiv 1 \bmod 4$. We have just proved that a) and b) are equivalent.
Let us now assume that p is reducible in $\mathbb{Z}[X]$. Then, $p=x y$ where, by the previous question, $|x|^{2} \in\left\{1, p, p^{2}\right\}$. If $|x|^{2}=1$, then $x \bar{x}=1$ and x is invertible in
$\mathbb{Z}[i]$. If $|x|^{2}=p^{2}$, then $|y|^{2}=1$ and y is invertible in $\mathbb{Z}[i]$. If both x and y are not units in $\mathbb{Z}[i]$, then $|x|^{2}=a^{2}+b^{2}=p$ where $x=a+i b$. So b) implies c).
Finally, if $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$, then $p=(a+i b)(a-i b)$ is reducible in $\mathbb{Z}[i]$. So c) implies b).
5. (Harder) Pick any $x=\varepsilon \prod_{i} p_{i}^{\alpha_{i}} \in \mathbb{Z}$ where $\varepsilon \in\{-1,1\}, \alpha_{i} \in \mathbb{Z}_{>0}$ and the p_{i} are distinct primes. Show that there exists $a, b \in \mathbb{Z}$ such that $x=a^{2}+b^{2}$ if and only if for all i such that α_{i} is odd, $p_{i} \neq 3 \bmod 4$.

Solution: Let $\Sigma:=\left\{a^{2}+b^{2}: a, b \in \mathbb{Z}\right\}$. Note that $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=|a+i b|^{2}|c+i d|^{2}=$ $|(a+i b)(c+i d)|^{2}=|(a c-b d)+i(a d+b c)|^{2}=(a c-b d)^{2}+(a d+b c)^{2}$. So Σ is closed under multiplication and, to answer the question, it suffices to show which prime powers are in Σ. Even prime powers are in Σ and so is 2 and any prime $p \equiv 1$ $\bmod 4$, by the previous question. So a prime power is not in Σ if and only if it is an odd power of some $p \equiv 3 \bmod 4$.

