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Problem 1 :

1. Let Pn =Xn − 1. Let µn ⊆ C be the set of roots of Pn in C. The elements of µn are
called the n-th roots of the unity. Show that

Pn = ∏
ζ∈µn

X − ζ.

Solution: Since each element of µn is a root of Pn, the polynomial ∏ζ∈µnX − ζ

divides Pn. But µn = {e
2ikπ
n ∶ 0 ⩽ k < n} has size n so those two polynomials have the

same degree. It follows that there exists u ∈ C⋆ such that Pn = u ⋅∏ζ∈µnX − ζ. But
the coefficient of Xn in both Pn and ∏ζ∈µnX−ζ is 1, so u = 1 and Pn =∏ζ∈µnX−ζ.

Note that µn is in fact a cyclic subgroup of C⋆.

2. A ζ ∈ µn is said to be primitive if it is not a d-th root of the unity for any d < n.
Show that there are ϕ(n) primitive n-th roots of the unity, where ϕ(n) is Euler’s
totient function.

Solution:Pick ζ = e
2ikπ
n ∈ µn. It is a root of Pd for some d < n if and only if

l ∶= gcd(n, k) ≠ 1 (and in that case it is a root of Pn
l
). Indeed ζ

n
l = e

2ikπ
n

⋅n
l = e

2ikπ
l = 1

if and only if k
l ∈ Z. Since ϕ(n) is, by definition, the number of 0 ⩽ k < n that are

coprime with n, we do have ϕ(n) primitive n-th roots of the unity.

3. Let
Φn(X) = ∏

ζ∈µn primitive
X − ζ.

Show that Pn =∏d∣nΦd. Conclude that Φn(X) ∈ Z[X].

Solution:Pick any ζ ∈ µn, Let d∣n be the order of ζ. Then ζ is a primitive d-
th root of the unity. Note also that ζ is a primitive d-th root for a unique d so
µn is the disjoint union of µn,d = {ζ ∈ µn ∶ ζ is a primitive d-th root} for d∣n. So
Pn(X) =∏d∣n∏ζ∈µn,d(X −ζ). Note also that if d∣n and ζ is a d-th root of the unity
(primitive or not), then ζn = 1, so all primitive d-th roots of the unity are in µn,d
and ∏ζ∈µn,d(X − ζ) = Φd(X) by definition. It follows that Pn =∏d∣nΦd.

Let us first prove that if P = UV where P , U ∈ Q[X] and V ∈ C[X], then V ∈ Q[X].
Indeed, let P = UV ′+R be its Euclidean division in Q[X], then it also a Euclidean
division in C[X]. But P = UV is also a Euclidean division in C[X] and we saw
that Euclidean division in C[X] is unique. It follows that V = V ′ ∈ Q[X].

Because Φn∏d∣n,d<nΦd = Pn ∈ Q[X], we obtain, by induction on n, that Φn ∈ Q[X]

for all n. It now follows from Gauss’s lemma (and induction), that there exists
cd ∈ Q⋆ such that cdΦd ∈ Z[X] and ∏d∣n cdΦd = Pn. It follows (looking at he
coefficient of Xn), that ∏d∣n cd = 1. Note also that, since the coefficient of X ∣µd∣ in
cdΦd is cd, we must have that cd ∈ Z and hence, each of the cd is invertible in Z. It
follows that Φn = c

−1
n cnΦn ∈ Z[X].
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4. (Harder) Let p be a prime number. Show that Φp(X + 1) is irreducible in Z[X].
Conclude that Φp is irreducible in Z[X].

Solution:We have Pp =Xp −1 = (X −1)∑
p−1
i=0 X

i = Φ1 ⋅Φp so Φp = ∑
p−1
i=0 X

i = Xp−1
X−1 .

So Φp(X + 1) =
(X+1)p−1

X =
∑pi=0 (

p
i
)Xi−1
X = ∑

p−1
i=0 (

p
i+1)X

i. The dominant coefficient
is (

p
p
) = 1. The other coefficients are equal to (

p
i+1) =

p!
(i+1)!(p−i−1)! for 0 < i + 1 < p

and they are all multiples of p. Indeed, Let p appears in the prime decomposition
of p! but, since i + 1, p − i − 1 < p, it does not appear in the prime decomposition
of the numerator. It follows that p is a prime factor of (

p
i+1) (which we know is

an integer!). Moreover, the constant term is (
p
1
) = p is not a multiple of p2. It

follows that we can apply the Eisenstein criterion and that Φp(X +1) is irreducible
in Z[X].

If Φd = AB where A, B ∈ Z[X], then Φd(X+1) = A(X+1)B(X+1), where A(X+1),
B(X + 1) ∈ Z[X]. By the previous question, we may assume that A(X + 1) is a
unit (in particular, it is a constant polynomial). So A = A(X + 1) is also a unit.

Problem 2 :
Let K be a field. For all n ∈ Z, let n = n ⋅ 1K ∈ K. For all P = ∑

n
i=0 ciX

i ∈ Z[X], let
P = ∑

n
i=0 ciX

i ∈K[X].

1. Show that, if a ∈K⋆ is order n, then Φn(a) = 0.

Solution: If a is order n, then we have an = 1, i.e. Pn(a) = 0. If Φd(a) = 0 for
some d < n, then since Φd divides P d, we also have P d(a) = 0 and hence ad = 1,
contradicting the fact that the order of a is n. Since Pn = ∏d∣nΦd, Φd(a) ≠ 0 if
d < n, Pn(a) = 0 and K, being a field, is integral, we must have Φn(a) = 0.

2. Until the end of that problem, we will assume that ∣K ∣ = q < ∞. Show that there
are at most ∑d∣q−1,d<q−1 deg(Φd) elements in K⋆ which are not order q − 1.

Solution:The group K⋆ is order q − 1. So, by Lagrange, the order of any element
in K⋆ divides q − 1. If the order of a ∈ K⋆ is d < q − 1, then Φd(a) = 0 and since
Φd can have at most deg(Φd) = deg(Φd) roots, it follows that there are at most
∑d∣q−1,d<q−1 deg(Φd) elements in K⋆ which are not order q − 1.

3. Show that K⋆ is cyclic.

Solution: Since Pq−1 = ∏d∣q−1 Φd, we have q − 1 = deg(Pq−1) = ∑d∣q−1 deg(Φd), so
∑d∣q−1,d<q−1 deg(Φd) = q − 1 − deg(Φq−1) < q − 1. It follows that there must be an
element of order q − 1 in K⋆ which is therefore cyclic.

Problem 3 :
Recall that Z[i] is the subring of C consisting of elements of the form a + ib where a,
b ∈ Z. Let p ∈ Z be prime. Recall that Z[i] is a Euclidian domain.

1. Show that Z[X]/(p,X2 + 1), Z[i]/(p) and (Z/pZ)[X]/(X2 + 1) are isomorphic.

Solution: Let f ∶ Z[X] → Z[i] be the evaluation map at i (to be precise, it is
the restriction to Z[X] of the evaluation map at i from C[X] into C). Since
Z[i] is the subring of C generated by Z and i, we do have f(Z[X]) = Z[i]. Also
let π1 be the reduction map Z[i] → Z[i]/(p) (we have π1(x) = x + (p)). Then
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θ ∶= π1 ○ f ∶ Z[X] → Z[i]/(p) is a ring homomorphism. Since both f and π1
are surjective, so is θ. Let us show that the kernel of θ is (p,X2 + 1). We have
f(X2+1) = i2+1 = 0, so θ(X2+1) = 0. Also θ(p) = π1(p) = 0 so (X2+1, p) ⊆ ker(θ).

Conversely, pick any P ∈ Z[X] such that θ(P ) = 0, then f(P ) ∈ ker(π1) = (p).
By the same proof as in Q[X], we can show that there exist Q, R ∈ Z[X] such
that P = (X2 + 1)Q + R and deg(R) ⩽ 1 (note that the dominant coefficient of
X2+1 is 1 so we never have to do any division when doing the long division). Then
f(P ) = R(i). If R(i) = a + ib ∈ (p), then a + ib = p(c + id) and thus a = pc and
b = pd. It follows that R = pS for some S ∈ Z[X]. Since P = (X2 + 1)Q + pS,
we do have that P ∈ (X2 + 1, p). By the first isomorphism theorem, we have that
Z[X]/(p,X2 + 1) is isomorphic to Z[i]/p.

Now, let g ∶ Z[X] → (Z/pZ)[X] be the reduction map on the coefficients and
π2 ∶ (Z/pZ)[X] → (Z/pZ)[X]/(X2 + 1) be the reduction map. Then χ ∶= π2 ○ g ∶
Z[X] → (Z/pZ)[X]/(X2 + 1) is a surjective ring homomorphism. Once again,
χ(p) = π2(g(p)) = π2(0) = 0 and χ(X2+1) = π2(X

2+1) = 0, so (p,X2+1) ⊆ ker(χ).
Conversely, pick some P ∈ ker(χ) and write P = (X2 + 1)Q +R where deg(R) ⩽ 1.
We have χ(P ) = π2(X

2 + 1)χ(Q) + π2(g(R)) = π2(g(R)) = 0. So g(R) ∈ (X2 + 1).
Since deg(g(R)) ⩽ 1 < deg(Xp2+1), g(R) = 0 and every coefficient of R is divisible
by p. So R = pS for some S ∈ Z[X] and P ∈ (X2 + 1, p). By the first isomorphism
theorem, (Z/pZ)[X]/(X2 + 1) is isomorphic Z[X]/(p,X2 + 1).

2. Assume that p ≠ 2, show that the following are equivalent:

a) −1 is a square in (Z/pZ);

b) there is an element of order 4 in (Z/pZ)⋆;

c) 4∣p − 1.

Solution: If a2 = 1 mod p, then a4 = 1 and since a is not order two, it is order four.
So a) implies b). Conversely, if a4 = 1 then a2 = 1 or −1 which are the only two
roots of X2 − 1. But if a is order 4, then a2 ≠ 1 so a2 = −1. We have proved that b)
implies a). Finally since (Z/pZ)⋆ is cyclic of order p − 1, b) and c) are equivalent.

3. Assume that p = xy for some x, y ∈ Z[i]. Show that ∣x∣2 ∈ {1, p, p2}, here ∣x∣ denotes
the complex norm.

Solution:We have ∣p∣2 = ∣x∣2∣y∣2. Also, if x ∈ Z[i], then ∣x∣2 ∈ Z, so ∣x∣2 divides p2

in Z. It follows that (since it is positive) ∣x∣2 ∈ {1, p, p2}.

4. Show that the following are equivalent:

a) p = 2 or p ≡ 1 mod 4;

b) p is reducible in Z[i];

c) there exist a, b ∈ Z such that p = a2 + b2.

Solution: Since Z[i] is a PID, p is irreducible if and only if p is prime, if and only
if p is maximal, if and only if Z[i]/p ≅ (Z/pZ)[X]/(X2 + 1) is a field, if and only
if X2 + 1 is irreducible in (Z/pZ)[X], if and only if X2 + 1 has no root in Z/pZ. If
p = 2, then 12 + 1 ≡ 2 ≡ 0 mod p. If p ≠ 2, we saw in a previous question that −1 is
a square in Z/pZ if and only if p ≡ 1 mod 4. We have just proved that a) and b)
are equivalent.

Let us now assume that p is reducible in Z[X]. Then, p = xy where, by the
previous question, ∣x∣2 ∈ {1, p, p2}. If ∣x∣2 = 1, then xx = 1 and x is invertible in
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Z[i]. If ∣x∣2 = p2, then ∣y∣2 = 1 and y is invertible in Z[i]. If both x and y are not
units in Z[i], then ∣x∣2 = a2 + b2 = p where x = a + ib. So b) implies c).

Finally, if p = a2 + b2 for some a, b ∈ Z, then p = (a+ ib)(a− ib) is reducible in Z[i].
So c) implies b).

5. (Harder) Pick any x = ε∏i p
αi
i ∈ Z where ε ∈ {−1,1}, αi ∈ Z>0 and the pi are distinct

primes. Show that there exists a, b ∈ Z such that x = a2 + b2 if and only if for all i
such that αi is odd, pi ≢ 3 mod 4.

Solution: Let Σ ∶= {a2+b2 ∶ a, b ∈ Z}. Note that (a2+b2)(c2+d2) = ∣a+ ib∣2∣c+ id∣2 =
∣(a + ib)(c + id)∣2 = ∣(ac − bd) + i(ad + bc)∣2 = (ac − bd)2 + (ad + bc)2. So Σ is closed
under multiplication and, to answer the question, it suffices to show which prime
powers are in Σ. Even prime powers are in Σ and so is 2 and any prime p ≡ 1
mod 4, by the previous question. So a prime power is not in Σ if and only if it is
an odd power of some p ≡ 3 mod 4.

4


