Homework 10

Due November 29th

The questions indicated as (Harder) are optional and will not be taken in account in the grade.
Problem 1 :

1. Let $P_{n}=X^{n}-1$. Let $\mu_{n} \subseteq \mathbb{C}$ be the set of roots of P_{n} in \mathbb{C}. The elements of μ_{n} are called the n-th roots of the unity. Show that

$$
P_{n}=\prod_{\zeta \in \mu_{n}} X-\zeta .
$$

2. A $\zeta \in \mu_{n}$ is said to be primitive if it is not a d-th root of the unity for any $d<n$. Show that there are $\varphi(n)$ primitive n-th roots of the unity, where $\varphi(n)$ is Euler's totient function.
3. Let

$$
\Phi_{n}(X)=\prod_{\zeta \epsilon \mu_{n}} \prod_{\text {primitive }} X-\zeta .
$$

Show that $P_{n}=\prod_{d \mid n} \Phi_{d}$. Conclude that $\Phi_{n}(X) \in \mathbb{Z}[X]$.
4. (Harder) Let p be a prime number. Show that $\Phi_{p}(X+1)$ is irreducible in $\mathbb{Z}[X]$. Conclude that Φ_{p} is irreducible in $\mathbb{Z}[X]$.

Problem 2 :

Let K be a field. For all $n \in \mathbb{Z}$, let $\bar{n}=n \cdot 1_{K} \in K$. For all $P=\sum_{i=0}^{n} c_{i} X^{i} \in \mathbb{Z}[X]$, let $\bar{P}=\sum_{i=0}^{n} \overline{c_{i}} X^{i} \in K[X]$.

1. Show that, if $a \in K^{\star}$ is order n, then $\bar{\Phi}_{n}(a)=0$.
2. Until the end of that problem, we will assume that $|K|=q<\infty$. Show that there are at most $\sum_{d \mid q-1, d<q-1} \operatorname{deg}\left(\Phi_{d}\right)$ elements in K^{\star} which are not order $q-1$.
3. Show that K^{\star} is cyclic.

Problem 3 :

Recall that $\mathbb{Z}[i]$ is the subring of \mathbb{C} consisting of elements of the form $a+i b$ where a, $b \in \mathbb{Z}$. Let $p \in \mathbb{Z}$ be prime. Recall that $\mathbb{Z}[i]$ is a Euclidian domain.

1. Show that $\mathbb{Z}[X] /\left(p, X^{2}+1\right), \mathbb{Z}[i] /(p)$ and $(\mathbb{Z} / p \mathbb{Z})[X] /\left(X^{2}+1\right)$ are isomorphic.
2. Assume that $p \neq 2$, show that the following are equivalent:
a) -1 is a square in $(\mathbb{Z} / p \mathbb{Z})$;
b) there is an element of order 4 in $(\mathbb{Z} / p \mathbb{Z})^{\star}$;
c) $4 \mid p-1$.
3. Assume that $p=x y$ for some $x, y \in \mathbb{Z}[i]$. Show that $|x|^{2} \in\left\{1, p, p^{2}\right\}$, here $|x|$ denotes the complex norm.
4. Show that the following are equivalent:
a) $p=2$ or $p \equiv 1 \bmod 4$;
b) p is reducible in $\mathbb{Z}[i]$;
c) there exist $a, b \in \mathbb{Z}$ such that $p=a^{2}+b^{2}$.
5. (Harder) Pick any $x=\prod_{i} p_{i}^{\alpha_{i}} \in \mathbb{Z}_{>1}$ where $\varepsilon \in\{-1,1\}, \alpha_{i} \in \mathbb{Z}_{>0}$ and the p_{i} are distinct primes. Show that there exists $a, b \in \mathbb{Z}$ such that $x=a^{2}+b^{2}$ if and only if for all i such that α_{i} is odd, $p_{i} \not \equiv 3 \bmod 4$.
