nyt Silvain Rideau 1091 Evans

silvain.rideau@berkeley.edu www.normalesup.org/~srideau/eng/teaching

Final (Lecture 002)

May 11th

- To do a later question, you can always assume a previous question even if you have not answered it.
- There are three problems (the third one is on the other side of this page).
- I know this is long. I don't expect you to do everything. My guess is that people doing between ten and twelve questions will get a top grade.

Fact 0.1:

In the following problems, we will be assuming that the following are true (you do NOT have to prove them):

- For all $d \in \mathbb{Z}_{>0}$, there exists a non constant monic polynomial $\Phi_d(X) \in \mathbb{Z}[X]$ such that $X^n 1 = \prod_{d|n} \Phi_d(X)$;
- For all $q, d \in \mathbb{Z}_{>1}, |\Phi_d(q)| > q-1$. Here $|\Phi_d(q)|$ denotes the absolute value.

Problem 1:

Let K be a field. For all $n \in \mathbb{Z}$, let $\overline{n} = n \cdot 1_K \in K$. For all $P = \sum_{i=0}^n c_i X^i \in \mathbb{Z}[X]$, let $\overline{P} = \sum_{i=0}^n \overline{c_i} X^i \in K[X]$.

- 1. Show that $P \mapsto \overline{P}$ is a (unitary) ring homomorphism from $\mathbb{Z}[X]$ to K[X].
- 2. Show that, if $a \in K^*$ is order n, then $\overline{\Phi}_n(a) = 0$.
- 3. Until the end of that problem, we will assume that $|K| = q < \infty$. Show that there are at most $\sum_{d|q-1,d< q-1} \deg(\Phi_d)$ elements in K^* which are not order q-1.
- 4. Show that K^* is cyclic.

Problem 2:

Recall that $\mathbb{Z}[i]$ is the subring of \mathbb{C} consisting of elements of the form a + ib where a, $b \in \mathbb{Z}$. Recall that $\mathbb{Z}[i]$ is a Euclidian domain. Let $p \in \mathbb{Z}$ be prime.

- 1. Show that $\mathbb{Z}[X]/(p, X^2 + 1)$, $\mathbb{Z}[i]/(p)$ and $\mathbb{F}_p[X]/(X^2 + 1)$ are isomorphic.
- 2. Assume that $p \neq 2$, show that the following are equivalent:
 - a) -1 is a square mod p;
 - b) there is an element of order 4 in \mathbb{F}_{p}^{\star} ;
 - c) 4|p-1|.
- 3. Assume that p = xy for some $x, y \in \mathbb{Z}[i]$. Show that $|x|^2 \in \{1, p, p^2\}$, here |x| denotes the complex norm.
- 4. Show that the following are equivalent:
 - a) $p = 2 \text{ or } p = 1 \mod 4;$
 - b) p is reducible in $\mathbb{Z}[i]$;
 - c) there exist $a, b \in \mathbb{Z}$ such that $p = a^2 + b^2$.

Problem 3:

Let D be a division ring.

- 1. Let $F = \{x \in D : \forall y \in D, xy = yx\}$. Show that F is a field.
- 2. Until the end of that problem, we will assume that $|D| < \infty$. Let q = |F|, show that there exists $m \in \mathbb{Z}_{>0}$ such that $|D| = q^m$.
- 3. Pick any $d \in D$. Show that $C_D(d) = \{x \in D : xd = dx\} \subseteq D$ is a subring of D containing F, that it is a division ring and that there exists an $m_d \in \mathbb{Z}_{>0}$ such that $|C_D(d)| = q^{m_d}$.
- 4. Show that there exists $d_i \in D$ for $i = 1 \dots k$, such that

$$q^m - 1 = q - 1 + \sum_{i=1}^k \frac{q^m - 1}{q^{m_{d_i}} - 1}.$$

- 5. Show that for all n < m, $\frac{q^{m-1}}{q^{n-1}} \in \mathbb{Z}$ if and only if n|m. When n|m, show that $\Phi_m(q)|\frac{q^{m-1}}{q^{n-1}}$ in \mathbb{Z} .
- 6. Show that $\Phi_m(q)|q-1$.
- 7. Conclude that D is a field.