Final (Lecture 002)

May 11th

- To do a later question, you can always assume a previous question even if you have not answered it.
- There are three problems (the third one is on the other side of this page).
- I know this is long. I don't expect you to do everything. My guess is that people doing between ten and twelve questions will get a top grade.

Fact 0.1:

In the following problems, we will be assuming that the following are true (you do NOT have to prove them):

- For all $d \in \mathbb{Z}_{>0}$, there exists a non constant monic polynomial $\Phi_{d}(X) \in \mathbb{Z}[X]$ such that $X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)$;
- For all $q, d \in \mathbb{Z}_{>1},\left|\Phi_{d}(q)\right|>q-1$. Here $\left|\Phi_{d}(q)\right|$ denotes the absolute value.

Problem 1:

Let K be a field. For all $n \in \mathbb{Z}$, let $\bar{n}=n \cdot 1_{K} \in K$. For all $P=\sum_{i=0}^{n} c_{i} X^{i} \in \mathbb{Z}[X]$, let $\bar{P}=\sum_{i=0}^{n} \overline{c_{i}} X^{i} \in K[X]$.

1. Show that $P \mapsto \bar{P}$ is a (unitary) ring homomorphism from $\mathbb{Z}[X]$ to $K[X]$.
2. Show that, if $a \in K^{\star}$ is order n, then $\bar{\Phi}_{n}(a)=0$.
3. Until the end of that problem, we will assume that $|K|=q<\infty$. Show that there are at most $\sum_{d \mid q-1, d<q-1} \operatorname{deg}\left(\Phi_{d}\right)$ elements in K^{\star} which are not order $q-1$.
4. Show that K^{\star} is cyclic.

Problem 2:

Recall that $\mathbb{Z}[i]$ is the subring of \mathbb{C} consisting of elements of the form $a+i b$ where a, $b \in \mathbb{Z}$. Recall that $\mathbb{Z}[i]$ is a Euclidian domain. Let $p \in \mathbb{Z}$ be prime.

1. Show that $\mathbb{Z}[X] /\left(p, X^{2}+1\right), \mathbb{Z}[i] /(p)$ and $\mathbb{F}_{p}[X] /\left(X^{2}+1\right)$ are isomorphic.
2. Assume that $p \neq 2$, show that the following are equivalent:
a) -1 is a square $\bmod p$;
b) there is an element of order 4 in \mathbb{F}_{p}^{\star};
c) $4 \mid p-1$.
3. Assume that $p=x y$ for some $x, y \in \mathbb{Z}[i]$. Show that $|x|^{2} \in\left\{1, p, p^{2}\right\}$, here $|x|$ denotes the complex norm.
4. Show that the following are equivalent:
a) $p=2$ or $p=1 \bmod 4$;
b) p is reducible in $\mathbb{Z}[i]$;
c) there exist $a, b \in \mathbb{Z}$ such that $p=a^{2}+b^{2}$.

Problem 3 :

Let D be a division ring.

1. Let $F=\{x \in D: \forall y \in D, x y=y x\}$. Show that F is a field.
2. Until the end of that problem, we will assume that $|D|<\infty$. Let $q=|F|$, show that there exists $m \in \mathbb{Z}_{>0}$ such that $|D|=q^{m}$.
3. Pick any $d \in D$. Show that $\mathrm{C}_{D}(d)=\{x \in D: x d=d x\} \subseteq D$ is a subring of D containing F, that it is a division ring and that there exists an $m_{d} \in \mathbb{Z}_{>0}$ such that $\left|\mathrm{C}_{D}(d)\right|=q^{m_{d}}$.
4. Show that there exists $d_{i} \in D$ for $i=1 \ldots k$, such that

$$
q^{m}-1=q-1+\sum_{i=1}^{k} \frac{q^{m}-1}{q^{m_{d_{i}}}-1}
$$

5. Show that for all $n<m, \frac{q^{m}-1}{q^{n}-1} \in \mathbb{Z}$ if and only if $n \mid m$. When $n \mid m$, show that $\Phi_{m}(q) \left\lvert\, \frac{q^{m}-1}{q^{n}-1}\right.$ in \mathbb{Z}.
6. Show that $\Phi_{m}(q) \mid q-1$.
7. Conclude that D is a field.
