Midterm (Lecture 002)

March 8th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem I (Cyclic groups of order p^{2}):
Let p be a prime number.
I. Let G be a cyclic group of order p^{2}. Show that there are $p(p-1)$ elements in G that generate it.
2. Let G be a finite group, n be the number of elements of order p^{2}, m be the number of cyclic subgroups of G of order p^{2}, show that

$$
n=p(p-1) m
$$

Problem 2 (Groups of order $2 p$):
Let G be a group of order $2 p$ for some prime p.
I. Show that there exists a and $b \in G$ such that a is order $2, b$ has order p and $G=\langle a, b\rangle$.
2. Show that $a b a \in\langle b\rangle$.
3. Show that $a b a=b$ or $a b a=b^{-1}$.
4. Show that, if $a b a=b$, then $G \cong \mathbb{Z} / 2 p \mathbb{Z}$.
5. Show that, if $a b a=b^{-1}$, then $G \cong D_{2 p}$.

