Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu www.normalesup.org/~srideau/eng/teaching

Midterm (Lecture 003)

March 8th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem I (Translation action) :

Let *G* be a finite group of order *m* and $g \in G$ be an element of order *n*. Let $G = \{g_0, \ldots, g_{m-1}\}$ and let $\sigma_g : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}$ be the map such that $\sigma_g(i) = j$ where $g \cdot g_i = g_j$. Recall that $\varepsilon : S_m \rightarrow \{1, -1\}$ is the sign of a permutation.

- I. Show that σ_g is a bijection.
- 2. Show that σ_g is a disjoint product of *n*-cycles.
- 3. Show that $\varepsilon(\sigma_q) = (-1)^{(n-1)m/n}$.

Problem 2 (Groups of order 15) : Let *G* be a group of order 15.

- I. Show that there exists a and $b \in G$ such that a is order 3, b has order 5 and $G = \langle a, b \rangle$.
- 2. Show that $aba^{-1} \in \langle b \rangle$.
- 3. Show that $aba^{-1} = b$.
- 4. Show that $G \cong \mathbb{Z}/15\mathbb{Z}$.