Final

May 9th

- To do a later question in a problem, you can always assume a previous question even if you have not answered it.
- I am aware that this is long. I don't expect you to do everything.
- There are 16 questions distributed among 4 problems.
- Remember that using a pen and writing clearly improves readability.

Problem 1:

1. Let R be an integral domain. Show that prime elements are irreducible.
2. Let R be a PID. Show that any $a, b \in R$ have a greatest common divisor.
3. Let $F \leqslant K$ be a field extension, and $a \in K$ be algebraic over F. Show that there exists an irreducible $P \in F[X]$ such that $P(a)=0$.

Problem 2 :

Let G be a finite group and H, K be two subgroups of G. For all $g \in G$, we define $g H g^{-1}:=\left\{g \cdot h \cdot g^{-1}: h \in H\right\}$. Let $S=\left\{g H g^{-1}: g \in G\right\}$.

1. For all $g \in G$, show that $g H g^{-1}$ is a subgroup of G and that $h \mapsto g \cdot h \cdot g^{-1}$ defines a group isomorphism between H and $g H^{-1}$.
2. For all $k \in K$ and $L \in S$, define $k \star L:=k L k^{-1}=\left\{k \cdot l \cdot k^{-1}: l \in L\right\}$. Show that this defines an action of K on S and that for all $L \in S, \operatorname{Stab}[K](L)=\mathrm{N}_{G}(L) \cap K$.
3. Show that $|S|$ divides $[G: H]$.
4. Assume that $|K|=p^{n}$ for some prime p and some $n \in \mathbb{Z}_{>0}$. Let $F:=\{L \in S: \forall k \in$ $K, k \star L=L\}$. Show that $|F| \equiv|S| \bmod p$.
5. Assume that both $|K|$ and $|H|$ are powers of some prime p and that $\operatorname{gcd}(p,[G$: $H])=1$. Show that there exists $L \in S$ such that $K \leqslant \mathrm{~N}_{G}(L)$.
6. With the same assumptions and notations as above (in particular, $K \leqslant \mathrm{~N}_{G}(L)$), show that $[L K: L]$ is a power of p. Conclude that $K \leqslant L$.

Problem 3 :

Let R be a commutative ring and $I \subset R$ be a proper ideal. Recall that

$$
\sqrt{I}:=\bigcap_{I \subseteq \mathfrak{p} \text { prime ideal }} \mathfrak{p} .
$$

We also define

$$
\mathcal{J}(I):=\bigcap_{I \subseteq \mathfrak{M}} \mathfrak{M} .
$$

1. Show that $\mathcal{J}(I) \subseteq R$ is an ideal and that $\sqrt{I} \subseteq \mathcal{J}(I)$.
2. Let R be a PID and $a \in R$. Assume that $a=\prod_{i=0}^{k} p_{i}^{\alpha_{i}}$ where the p_{i} are pairwise non associated irreducibles and $\alpha_{i} \in \mathbb{Z}_{>0}$. Show that $R /(a)$ is isomorphic to $\prod_{k} R /\left(p_{i}^{\alpha_{i}}\right)$.
3. With the same notations and assumptions than in the previous question, show that $\sqrt{(a)}=\mathcal{J}((a))=\left(\prod_{i=0}^{k} p_{i}\right)$.

Problem 4:

Let F be a field of characteristic zero. For all $P=\sum_{i=0}^{k} a_{i} X^{i} \in F[X]$, we define $P^{\prime}=$ $\sum_{i=0}^{k-1}(i+1) a_{i+1} X^{i}$.

1. Show that $P \mapsto P^{\prime}$ is a group homomorphism $(R[X],+) \rightarrow(R[X],+)$ whose kernel is the set of constant polynomials.
2. Show that, for all $P, Q \in F[X],(P Q)^{\prime}=P^{\prime} Q+P Q^{\prime}$ and that $\left(P^{n}\right)^{\prime}=n P^{\prime} P^{n-1}$.
3. Show that if a is a root of P of multiplicity $n \in \mathbb{Z}_{>0}$, then a is a root of P^{\prime} of multiplicity $n-1$ (by convention, a is a root of P of multiplicity 0 if it is not a root of P).
4. Let $F \leqslant K$ be a field extension, $P \in F[X]$ an irreducible polynomial and $a \in K$ a root of P of multiplicity strictly greater than 1 . Show that $P^{\prime}=0$.
