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• To do a later question in a problem, you can always assume a previous question
even if you have not answered it.

• I am aware that this is long. I don’t expect you to do everything.

• There are 16 questions distributed among 4 problems.

• Remember that using a pen and writing clearly improves readability.

Problem 1 :

1. Let R be an integral domain. Show that prime elements are irreducible.
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2. Let R be a PID. Show that any a, b ∈ R have a greatest common divisor.
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3. Let F ⩽ K be a field extension, and a ∈ K be algebraic over F . Show that there
exists an irreducible P ∈ F [X] such that P (a) = 0.
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Problem 2 :
Let G be a finite group and H, K be two subgroups of G. For all g ∈ G, we define
gHg−1 ∶= {g ⋅ h ⋅ g−1 ∶ h ∈H}. Let S = {gHg−1 ∶ g ∈ G}.

1. For all g ∈ G, show that gHg−1 is a subgroup of G and that h↦ g ⋅ h ⋅ g−1 defines a
group isomorphism between H and gHg−1.
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2. For all k ∈ K and L ∈ S, define k ⋆ L ∶= kLk−1 = {k ⋅ l ⋅ k−1 ∶ l ∈ L}. Show that this
defines an action of K on S and that for all L ∈ S, Stab[K](L) = NG(L) ∩K.
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3. Show that ∣S∣ divides [G ∶H].
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4. Assume that ∣K ∣ = pn for some prime p and some n ∈ Z>0. Let F ∶= {L ∈ S ∶ ∀k ∈
K, k ⋆L = L}. Show that ∣F ∣ ≡ ∣S∣ mod p.
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5. Assume that both ∣K ∣ and ∣H ∣ are powers of some prime p and that gcd(p, [G ∶
H]) = 1. Show that there exists L ∈ S such that K ⩽ NG(L).
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6. With the same assumptions and notations as above (in particular, K ⩽ NG(L)),
show that [LK ∶ L] is a power of p. Conclude that K ⩽ L.
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Problem 3 :
Let R be a commutative ring and I ⊂ R be a proper ideal. Recall that

√
I ∶= ⋂

I⊆p prime ideal
p.

We also define
J (I) ∶= ⋂

I⊆M maximal ideal
M.

1. Show that J (I) ⊆ R is an ideal and that
√
I ⊆ J (I).



Name: 11/16

2. Let R be a PID and a ∈ R. Assume that a = ∏k
i=0 p

αi
i where the pi are pairwise non

associated irreducibles and αi ∈ Z>0. Show that R/(a) is isomorphic to ∏kR/(pαi
i ).
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3. With the same notations and assumptions than in the previous question, show that√
(a) = J ((a)) = (∏k

i=0 pi).
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Problem 4 :
Let F be a field of characteristic zero. For all P = ∑ki=0 aiXi ∈ F [X], we define P ′ =
∑k−1i=0 (i + 1)ai+1Xi.

1. Show that P ↦ P ′ is a group homomorphism (R[X],+) → (R[X],+) whose kernel
is the set of constant polynomials.
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2. Show that, for all P , Q ∈ F [X], (PQ)′ = P ′Q + PQ′ and that (Pn)′ = nP ′Pn−1.
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3. Show that if a is a root of P of multiplicity n ∈ Z>0, then a is a root of P ′ of
multiplicity n−1 (by convention, a is a root of P of multiplicity 0 if it is not a root
of P ).
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4. Let F ⩽ K be a field extension, P ∈ F [X] an irreducible polynomial and a ∈ K a
root of P of multiplicity strictly greater than 1. Show that P ′ = 0.


