Solutions to the midterm

March 20th

Problem 1:

1. Let G be acting on a set X, show that $x \sim y$ defined by $\exists g \in Gg \star x = y$ is an equivalence relation on X.

Solution: Pick any $x, y, z \in X$. Since $x = 1 \star x$, we have $x \sim x$ and \sim is reflexive. Now assume $x \sim y$. So there exists a $g \in G$ such that $y = g \star x$. Then $x = g^{-1} \star (g \star x) = g^{-1} \star y$ so $y \sim x$. It follows that \sim is symmetric. Finally, assume that $x \sim y$ and $y \sim z$, then there exists $g, h \in G$ such that $y = g \star x$ and $z = h \star y$. Then $w = h \star (g \star x) = (hg) \star x$ and $x \sim z$. So \sim is transitive. Since \sim is reflexive, symmetric and transitive, it is an equivalence relation.

2. State Cauchy's theorem.

Solution: Let G be a finite group and p be a prime dividing the order of G, then there exists $x \in G$ such that |x| = p.

Problem 2:

Let G be a group and $H \leq G$ be a subgroup. For all $g, l \in G$, we define $g \star lH = glH$.

1. Show that \star is a group action of G on G/H.

Solution: Pick $g, h, l \in G$, we have $g \star (h \star lH) = g \star (hlH) = ghlH = gh \star lH$ and $1 \star lH = (1 \cdot l)H = lH$. So \star is a group action.

To be complete, we should also check that the function \star is well defined: pick $g, l, k \in G$ such that lH = kH, i.e. l = kh for some $h \in H$. Then gkH = glhH = glH since $h \in H$, so \star is well defined.

2. Let $K = \{g \in G : \forall l \in G, g \star lH = lH\}$. Show that $K \leq H$ and $K \leq G$.

Solution: K is the kernel of the permutation representation associated to the action \star . So $K \leq G$. Now, pick any $g \in K$, then for all $l \in G$, $g \star lH = lH$. In particular, $g \star H = gH = H$ so $g \in H$. It follows that $K \leq H$.

3. Let n = [G:H] and k = [H:K]. Show that k divides (n-1)!.

Solution: We have [G:K] = [G:H][H:K] = nk. Also, we have a group homomorphism $\theta: G \to S_{G/H}$, the permutation representation. By the first isomorphism theorem $G/K \cong \theta(G) \leq S_{G/H}$. By Lagrange, it follows that $nk = |G/K| = |\theta(G)|$ divides $|S_{G/H}| = n!$ and hence k divides (n-1)!.

4. Assume that |G| is finite and n is the smallest prime dividing |G|. Show that k = 1. Conclude that $H \leq G$.

Solution: By Lagrange nk = [G : K] divides |G| and hence so does k. Let p be a prime dividing k, then $p \ge n$ by hypothesis. By the previous question, k divides (n-1)!. But all the prime factors of (n-1)! are strictly smaller than n, a contradiction. It follows that k is not a multiple of any prime and hence k = 1. Since k = [H : K] = 1, we have $H = K \le G$.

Problem 3:

Let G be a group and $K_i \leq G$ for i = 1, 2 be such that $[G: K_i] < \infty$.

1. Show that $[K_1: K_1 \cap K_2] < \infty$. Conclude that $[G: K_1 \cap K_2] < \infty$.

Solution: Since $K_2 \leq G$, $K_1K_2 \leq G$. Moreover, by the second isomorphism theorem $K_1/(K_1 \cap K_2) \cong K_1K_2/K_2 \leq G/K_2$. By Lagrange, it follows that $[K_1 : K_1 \cap K_2]$ divides $|G/K_2|$, in particular, it is finite. Since $[G : K_1 \cap K_2] = [G : K_1][K_1 : K_1 \cap K_2]$, and both indices on the right are finite, $[G : K_1 \cap K_2]$ is finite.