Solutions to the final exam

December i8th

Problem I (Atomless Boolean algebras) :
I. Let $a \in A \backslash\{0\}$. Because a is not an atom, there exists $c \in A$ such that $0<c<a$. Let $c_{1}=c$ and $c_{2}=a \cap c^{\mathbf{c}}$, then $c_{1} \cup c_{2}=c \cup\left(a \cap c^{\mathbf{c}}\right)=(c \cup a) \cap\left(c \cup c^{\mathbf{c}}\right)=a \cap 1=a$ and $c_{1} \cap c_{2}=c \cap a\left(\cap c^{c}\right)=a \cap 0=0$.
2. We proceed by indcution on $|w|$. If $|w|=0$, then we must have $\varepsilon_{w}=1$. Otherwise, let us assume that $|w|=n$ and ε_{w} has been built. If $\varepsilon_{w} \cap a_{n} \neq 0$ and $\varepsilon_{w} \cap a_{n}^{\mathbf{c}} \neq 0$, then we must have $\varepsilon_{w 1}=\varepsilon_{w} \cap a_{k}$ and $\varepsilon_{w 0}=\varepsilon_{w} \cap a_{k}^{\mathrm{c}}$. Let us check these two values work. They are, by hypothesis, non zero, $\varepsilon_{w 0} \cap \varepsilon_{w 1}=\left(\varepsilon_{w} \cap a_{k}^{\mathbf{c}}\right) \cap\left(\varepsilon_{w} \cap a_{k}\right)=\varepsilon_{W} \cap 0=0$ and $\varepsilon_{w 0} \cup \varepsilon_{w 1}=\left(\varepsilon_{w} \cap a_{k}^{\mathbf{c}}\right) \cup\left(\varepsilon_{w} \cap a_{k}\right)=\varepsilon_{w} \cdot a_{k}^{\mathbf{c}}+\varepsilon_{w} \cdot a_{k}+\varepsilon_{w} \cdot a_{k}^{\mathbf{c}} \cdot \varepsilon_{w} \cdot a_{k}=\varepsilon_{w} \cdot\left(1+a_{k}\right)+\varepsilon_{w} \cdot a_{k}=\varepsilon_{w}$. Finally, if one of them is zero, by question 1 we find c_{0} and $c_{1} \neq 0$ such that $c_{0} \cup c_{1}=\varepsilon_{w}$ and $c_{0} \cap c_{1}=0$, So we can set $\varepsilon_{w 0}=c_{0}$ and $\varepsilon_{w 1}=c_{1}$.
3. For all $n \leqslant k$, we prove, by induction on $n-k$, that $\varepsilon_{w_{k}(f)} \leqslant \varepsilon_{w_{n}(f)}$. If $n=k$, this is obvious. Otherwise, by construction we have both $\varepsilon_{w 1} \leqslant \varepsilon_{w}$ and $\varepsilon_{w 0} \leqslant \varepsilon_{w}$ so $\varepsilon_{w_{n+1}(f)} \leqslant$ $\varepsilon_{w_{n}(f)} \leqslant \varepsilon_{w_{k}(f)}$, by induction.
Let us now assume that $a \cap \varepsilon_{w_{k}(f)}=0$, the for all $n \geqslant k, a \cap \varepsilon_{w_{n}(f)} \leqslant a \cap \varepsilon_{w_{k}(f)}=0$ and so $a \cap \varepsilon_{w_{n}(f)}=0$. If $a \cap \varepsilon_{w_{k}(f)} \neq 0$, for all $n \leqslant k, 0<a \cap \varepsilon_{w_{k}(f)} \leqslant \varepsilon_{w_{n}(f)}$.
4. Let us first show that one of the statements must hold. Let us assume that there exists $k \in \mathbb{N}$ such that $\varepsilon_{w_{k}(f)} \cap a=0$, the by the previous question, for all $n \geqslant k, \varepsilon_{w_{n}(f)} \cap a=0$. If we also had $\varepsilon_{w_{n}(f)} \cap a^{\mathrm{c}}=0$, by the same computation as above, we would have $\varepsilon_{w_{n}(f)}=\left(\varepsilon_{w_{n}(f)} \cap a\right) \cup\left(\varepsilon_{w_{n}(f)} \cap a^{\mathbf{c}}\right)=0$, a contradiction. It follows that for all $n \geqslant k$, $\varepsilon_{w_{n}(f)} \cap a^{\mathbf{c}} \neq 0$. By the previous question, the equality also holds if $n \leqslant k$.
Let us now show that those two cases cannot happen at the same time. Let k be such that $a=a_{k}$. If $\varepsilon_{w_{k-1}(f)} \cap a \neq 0$ and $\varepsilon_{w_{k-1}(f)} \cap a^{\mathbf{c}} \neq 0$, by construction (bercause $\left.\left|w_{k-1}(f)\right|=k\right)$, we have $\varepsilon_{w_{k-1}(f) 1}=\varepsilon_{w_{k-1}(f)} \cap a$ and $\varepsilon_{w_{k-1}(f) 0}=\varepsilon_{w_{k-1}(f)} \cap a^{\mathrm{c}}$. If $f(k)=1$, then $\varepsilon_{w_{k}(f)}=\varepsilon_{w_{k-1}(f)} \cap a$ and $\varepsilon_{w_{k}(f)} \cap a^{\mathbf{c}}=0$. If $f(k)=0$, then $\varepsilon_{w_{k}(f)}=\varepsilon_{w_{k-1}(f)} \cap a^{\mathbf{c}}$ and $\varepsilon_{w_{k}(f)} \cap a=0$.
It follows that either one of the statements is false for some $n<k$ or one of the statements is false for $n=k$. Hence both cannot be true for all n.
5. For all $n \in \mathbb{N}, \varepsilon_{w_{n}(f)} \cap 1=\varepsilon_{w_{n}(f)} \neq 0$ so $1 \in U_{f}$, and $\varepsilon_{w_{n}(f)} \cap 0=0$ so $0 \notin U_{f}$. Let a and $b \in U_{f}$, then, for all $n, \varepsilon_{w_{n}(f)} \cap a \neq 0$ and $\varepsilon_{w_{n}(f)} \cap b \neq 0$. By question 4, there exists n and $m \in \mathbb{N}$ such that $\varepsilon_{w_{n}(f)} \cap a^{\mathrm{c}}=0=\varepsilon_{w_{m}(f)} \cap b^{\mathrm{c}}$. By question 3, taking the minimal one, we may assume that $m=n$. We have $\varepsilon_{w_{n}(f)} \cap(a \cap b)^{\mathbf{c}}=\left(\varepsilon_{w_{n}(f)} \cap a^{\mathbf{c}}\right) \cup\left(\varepsilon_{w_{n}(f)} \cap b^{\mathbf{c}}\right)=0$ and hence, by question 4 again, for all $n \in \mathbb{N}, \varepsilon_{w_{n}(f)} \cap(a \cap b) \neq 0$ and $a \cap b \in U_{f}$.
Finally, let $a \in A$. By question 4, either for all $n \in \mathbb{N}, \varepsilon_{w_{k}(f)} \cap a \neq 0$ and $a \in U_{f}$ or for all $n \in \mathbb{N}, \varepsilon_{w_{k}(f)} \cap a^{\mathbf{c}} \neq 0$ and $a^{\mathbf{c}} \in U_{f}$. So U_{f} is an ultrafilter.
6. Let us proceed by induction on n. As $1=\varepsilon_{\varnothing} \in U$, the case $n=0$ is taken care of. Let us assume that w_{n} is built. We have $\varepsilon_{w_{n}} \in U$ and $\varepsilon_{w_{n} 0} \cup \varepsilon_{w_{n} 1}=\varepsilon_{w_{n}}$. If $\varepsilon_{w_{n} 0} \notin U$ and $\varepsilon_{w_{n} 1} \notin U$, then $\varepsilon_{w_{n} 0}^{\mathbf{c}} \in U$ and $\varepsilon_{w_{n} 1}^{\mathbf{c}} \notin U$ and hence $\varepsilon_{w_{n}}^{\mathbf{c}}=\varepsilon_{w_{n} 0} \cup \varepsilon_{w_{n} 1}^{\mathbf{c}}=\varepsilon_{w_{n} 0}^{\mathbf{c}} \cap \varepsilon_{w_{n} 1}^{\mathbf{c}} \in U$, a contradiction. So ther exists $i \in\{0,1\}$, such that $\varepsilon_{w_{n} i} \in U$. Let $w_{n+1}=w_{n} i$.
7. As we have seen in question $5, h$ is indeed a map from $\{0,1\}^{\mathbb{N}} \rightarrow \mathcal{S}(A)$. Let us show that it is injective. Let $f, g: \mathbb{N} \rightarrow\{0,1\}$ be distinct and let k be the minimal value at which they differ. We may assume that $f(n)=1$. For all $k \in \mathbb{N}, \varepsilon_{w_{n}(f)} \cap \varepsilon_{w_{k}(f)}=$ $\varepsilon_{w_{\min (n, k)}(f)} \neq 0$ so $\varepsilon_{w_{n}(f)} \in U_{f}$, but $\varepsilon_{w_{n}(f)} \cap \varepsilon_{w_{n}(g)}=\varepsilon_{w_{n-1}(f) 1} \cap \varepsilon_{w_{n-1}(f) 0}=0$ so $\varepsilon_{w_{n}(g)} \notin U_{f}$. By symmetry, $\varepsilon_{w_{n}(g)} \in U_{g}$, so $U_{f} \notin U_{g}$.
Finally, let us prove that h is surjective. Let U be an ultrafilter on A. By the previous question there exists $\left(w_{n}\right)_{n \in \mathbb{N}}$ such that $\varepsilon_{w_{n}} \in U$. Let $f(n)$ be the $n+1$-th letter of w_{k} for $k>n$ (this is well defined because w_{n} is a prefix of w_{k} of length n). Then $w_{n}(f)=w_{n-1}$. We claim that $h(f)=U$.
Let $a \in h(f)$, there exists n such that $\varepsilon_{w_{n}(f)} \cap a^{\mathbf{c}}=0$ and hence $a^{\mathbf{c}} \notin U$, i.e. $a \in U$ as U is an ultrafilter. Conversely, if $a \in U$, then $\varepsilon_{w_{n}(f)} \cap a \in U$ cannot be zero and thus $a \in h(f)$.

Problem 2 (Model theory of \mathbb{Z}):
I. Let c be a new constant and T be the $\mathcal{L}(c)$-theory:

$$
T=\operatorname{Th}(\mathcal{Z}) \cup\{\exists x x \cdot \bar{n}=c: n \in \mathbb{Z} \backslash\{0\}\}
$$

Let $\mathcal{M}^{\star} \vDash T$, then the reduct of \mathcal{M}^{\star} is elementarily equivalent to \mathcal{Z} and if $a=c^{\mathcal{M}}$, then $\mathcal{M} \vDash \exists x x \cdot \bar{n}=c$ for all $n \in Z z \backslash\{0\}$ and hence c is divisble by all \bar{n} for $n \in Z z \backslash\{0\}$. So it suffices to show that T is consistant. By compactness, it suffices to show that any finite $T_{0} \subseteq T$ is consistent. Let T_{0} be such a finite theory then $T_{0} \subseteq \operatorname{Th}(\mathcal{Z}) \cup\left\{\exists x x \cdot \overline{n_{i}}=\right.$ $c: 0<i<k\}$. Let $n=\max \left(n_{i}\right)$!, then, taking $c=n$, we make \mathcal{Z} into a model of T_{0}. That concludes the proof.
2. We proceed by contraposition. Let us assume that $\mathcal{M} \vDash \exists x \neg \varphi(x)$. Then, because $\mathcal{M} \equiv$ \mathcal{Z}, we also have $\mathcal{Z} \vDash \exists x \neg \varphi(x)$. In particular, there exists $n \in \mathbb{Z}$ such that $\mathcal{Z} \vDash \neg \varphi(n)$ and hence $\mathcal{Z} \vDash \neg \varphi(\bar{n})$. As $\mathcal{M} \equiv \mathcal{Z}$, we have that $\mathcal{M} \vDash \neg \varphi(\bar{n})$ for some $n \in \mathbb{Z}$.
3. Once again, we prove the contraposition. Let $\varphi(x)$ be such that $\mathcal{M} \vDash \varphi(a)$ if and only if $a=\bar{n}^{\mathcal{M}}$ for some $n \in \mathbb{Z}$. By the previous question, we have $\mathcal{M} \vDash \forall x \varphi(x)$ and hence every $a \in M$ is equal to some $\bar{n}^{\mathcal{M}}$. Let $f: \mathcal{Z} \rightarrow \mathcal{M}$ be defined by $f(n)=\bar{n}^{\mathcal{M}}$, it is easy to check that f is an embedding (because $\mathcal{M} \equiv \mathcal{Z}$) and we have just shown it is surjective. It follows that \mathcal{M} is isomorphic to \mathcal{Z}.

Problem 3 (Axiomatizability of equivalence relations) :
I. Let T_{E} be the theory that contains:

- $\forall x x E x$;
- $\forall x \forall y x E y \rightarrow y E x$;
- $\forall x \forall y \forall z(x E y \wedge y E z) \rightarrow x E z$.

Then the models of T_{E} are exactly the \mathcal{L}-structures where E is an equivalence relation, so this class is finitely axiomatizable.
2. This is not axiomatizable either. Let $\psi_{n}=\exists x_{1} \ldots \exists x_{n} \wedge_{i \neq j} \neg x_{i} E x_{j}$. Let T be an \mathcal{L} theory whose models are exactly the \mathcal{L}-structures where E is an equivalence relation with finitely many classes. Then $T^{\prime}=T \cup\left\{\psi_{n}: n \in \mathbb{N}_{>0}\right\}$ is consistent. Indeed, by compactness, it suffices to show that any finite $T_{0} \subseteq T^{\prime}$ is consistent. But $T_{0} \subseteq T \cup\left\{\psi_{n}\right.$: $\left.n \leqslant n_{0}\right\}$ for some $n_{0} \in \mathbb{N}_{>0}$ and that theory is clearly consistent (take any equivalence relation with n_{0}-classes). So T^{\prime} is consistent but a model of T^{\prime} is a model of T with infinitely many classes, a contradiction.
3. This is not axiomatizable. Let c be a new constant and $\varphi_{n}=\exists x_{1} \ldots \exists x_{n} \wedge_{i} c E x_{i} \wedge$ $\bigwedge_{i \neq j} \neg x_{i}=x_{j}$. Let us assume T is an \mathcal{L}-theory whose models are exactly the \mathcal{L}-structures where E is an equivalence relation whose classes are finite. Then $T^{\prime}=T \cup\left\{\varphi_{n}: n \in\right.$ $\left.\mathbb{N}_{>0}\right\}$ is consistent. Indeed, by compactness, it suffices to prove that finite $T_{0} \subseteq T^{\prime}$ are consistent, but $T_{0} \subseteq T \cup\left\{\varphi_{n}: n \leqslant n_{0}\right\}$ for some $n_{0} \in \mathbb{N}_{>0}$ and that theory clearly has a model (take E to have only one class of cardinality n_{0} and c to be any point in E). So T^{\prime} is consistent, but a model of T^{\prime} is a model of T so every class is finite and the class of c is infinite, a contradiction.
4. Let $T_{2, \infty}$ be the theory that consists of:

- T_{E};
- $\exists x_{1} \exists x_{2} \neg x_{1} E x_{2} \wedge\left(\forall x_{3}\left(x_{3} E x_{1} \vee x_{3} E x_{2}\right)\right)$;
- for all $n \in \mathbb{N}_{>0}$, the formula $\theta_{n}:=\forall x \exists y_{1} \ldots \exists y_{n} \wedge_{j} x E y_{j} \wedge \wedge_{i \neq j} y_{i} \neq y_{j}$.

Then any model of $T_{2, \infty}$ is an equivalence relation with two equivalence classes that are both infinite. So this class is axiomatizable.
However, it is not finitely axiomatisable. Indeed, let T^{\prime} be some finite theory whose models are exactly the equivalence relation with two equivalence classes that are both infinite. Taking the conjonction of the formulas in T^{\prime}, we may assume $T^{\prime}=\{\varphi\}$. We have $T_{2, \infty} \vDash \varphi$ and hence, by compactness, there is a finite $T_{0} \subseteq T_{2, \infty}$ such that $T_{0} \vDash \varphi$. Let n_{0} be the largest n such that θ_{n} appears in T_{0}, then any equivalence relation with two classes of cardinality n_{0} are models of T_{0} and hence of φ, a contradiction.
5. Let $\chi_{n}(x):=\exists y_{1} \exists y_{n} \wedge_{j} x E y_{i} \wedge \wedge_{i \neq j} y_{i} \neq y_{j} \wedge\left(\forall z\left(z E x \rightarrow \bigvee_{j} z=y_{j}\right)\right)$ which states that the class of x has size exactly n. Let $\zeta_{n}=\exists x \chi_{n}(x) \wedge\left(\forall y\left(\chi_{n}(y) \rightarrow y E x\right)\right)$ whcih states that there is exactly one class of cardinality n. Let $T_{\mathbb{N}}$ be the theory consisting of:

- T_{E};
- For all $n \in \mathbb{N}_{>0}, \zeta_{n}$.

Then the models of $T_{\mathbb{N}}$ have exactly one class of each finite (non zero) cardinality, so this class is axiomatisable. It is not finitely axiomatisable. Indeed, if there exists a formula ψ such that the models of ψ have exactly one class of each finite (non zero) cardinality, then $T_{\mathbb{N}} \vDash \psi$ and hence there exists some finite $T_{0} \subseteq T_{\mathbb{N}}$ such that $T_{0} \vDash \psi$. Let n_{0} be the largest n such that $\zeta_{n} \in T_{0}$, then equivalence relation with exactly one class of each cardinality smaller or equal to n_{0} is a model of T_{0} and thus of ψ, a contradiction.

Problem 4 (λ-calculus) :
I. If A is a propositional variable $(A \rightarrow A) \rightarrow A$ is not a tautology, so no λ-term can have type $(A \rightarrow A) \rightarrow A$ in the empty context.
2. Let t be a normal λ-term such that $\vdash t:(A \rightarrow A) \rightarrow(A \rightarrow A)$ holds. Let us discuss what can be the last rule applied to get that statement. It cannot be (Ax) because the context is empty. And it cannot be $\left(\rightarrow_{E}\right)$ because t being normal, there would exists $x \in V$ and normal $t_{1}, \ldots t_{n} \in \Lambda$ such that $t=\left(\ldots\left((x) t_{1}\right) \ldots\right) t_{n}$. But the variable x would be free in t but not in the context (which is empty), a contradiction. So the last rule applied is $\left(\rightarrow_{I}\right), t=\lambda f, u$ and $f: A \rightarrow A \vdash u: A \rightarrow A$ holds.
Let us now assume that u does not star with a λ. Then $u=\left(\ldots\left((y) t_{1}\right) \ldots\right) t_{n}$ where $y \in V$ and $t_{1}, \ldots t_{n} \in \Lambda$ are normal. Because y is free in u and the only variable that appears in the context is f, we must have $y=f$ and the only possible rules to prove the
statement $f: A \rightarrow A \vdash u: A \rightarrow A$ is n applications of $\left(\rightarrow_{E}\right)$. So there exists $A_{i} \in T$ such that $f: A \rightarrow A \vdash f: A_{1} \rightarrow\left(A_{2} \rightarrow \ldots\left(A_{n} \rightarrow(A \rightarrow A)\right) \ldots\right)$ which only holds (by the (Ax) rule) if $n=0$. So $t=\lambda f f$.
Let us now assume that $u=\lambda x v$ where v is a normal λ-term. Then, $\{f: A \rightarrow A, x:$ $A\} \vdash v: A$ holds. Let us prove by induction on v that the only normal λ-terms such that $\{f: A \rightarrow A, x: A\} \vdash v: A$ are the t_{n} where $t_{0}=x$ and $t_{n+1}=(f) t_{n}$. Let us discuss what are the possibilities for the last rule applied to prove $\{f: A \rightarrow A, x: A\} \vdash v: A$. Because A is not of the form $B \rightarrow C$, it cannot be $\left(\rightarrow_{I}\right)$. So v does not start with a λ and $v=\left(\ldots\left((y) v_{1}\right) \ldots\right) v_{n}$ for some $y \in V$ and normal λ-terms v_{i}. But then the only possible rules to prove $\{f: A \rightarrow A, x: A\} \vdash v: A$ is n applications of $\left(\rightarrow_{E}\right)$ and we have types A_{i} such that $\{f: A \rightarrow A, x: A\} \vdash y: A_{1} \rightarrow\left(A_{2} \rightarrow \ldots\left(A_{n} \rightarrow A\right) \ldots\right)$.
The only two variables in the context are x and f so y must be one of them. If $y=x$, then $n=0$ and $v=t_{0}$. If $y=f$, then $n=1, A_{1}=A$ and $\{f: A \rightarrow A, x: A\} \vdash v_{i}: A$ holds. By induction $v_{1}=t_{n}$ for some n and $v=(f) v_{1}=(f) t_{n}=t_{n+1}$.
So the only possibilities are $t=\lambda f f$ and $t=\lambda f \lambda x t_{n}$.
3. We proceed by induction on t. If $t=x$, then the only subterm of t is t itself and the statement is obvious. If $t=\lambda x u$ then the subterms of t are either t itself or substerms of u. As we have $\Gamma \vdash t: A, A=B \rightarrow C$ and $\Gamma \cup\{x: B\} \vdash u: C$ holds. By induction, the statement holds for any subterm of u and it clearly holds for t. If $t=(u) v$, then there is some type B such that $\Gamma \vdash u: B \rightarrow A$ and $\Gamma \vdash v: B$ both hold. The subterms of t are t itself, subterms of u and subterms of v and in all these three cases the statement holds (by induction in the last two cases).
4. We have:

$$
\begin{array}{rll}
(Y) t & \rightarrow_{\beta} & (\lambda x(t)(x) x) \lambda x(t)(x) x \\
& \rightarrow_{\beta} & (t)(\lambda x(t)(x) x) \lambda x(t)(x) x
\end{array}
$$

and

$$
(t)(Y) t \rightarrow_{\beta} \quad(t)(\lambda x(t)(x) x) \lambda x(t)(x) x
$$

So these two terms are β-equivalent.
5. There is no such type and context. To prove that statemant, by (the converse of) question 2, it suffices to prove that there is no $A \in T$ and a context Γ such that $(x) x: A$ holds (it is a subterm of Y).
If such a context and type exist, there also exist B such that $\Gamma \vdash x: B \rightarrow A$ and $\gamma \vdash x: B$ hold. Therefore there is a type C such that $x: C \in \Gamma$ and $B \rightarrow A=C=B$ (so that we can apply the (Ax) rule). But there is no type A and B such that $A=B \rightarrow A$.

