Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu www.normalesup.org/~srideau/eng/teaching

Final exam

December 18th

Remember that you can always assume a previous question (even if you have not proved it) to prove a later one.

Here are the typing rules for simply typed λ -calculus:

$$(Ax) \overline{\Gamma \cup \{x:A\} \vdash x:A}$$
$$(\rightarrow_{I}) \frac{\Gamma \cup \{x:A\} \vdash t:B}{\Gamma \vdash \lambda x t:A \rightarrow B} \quad (\rightarrow_{E}) \frac{\Gamma_{1} \vdash t:A \rightarrow B}{\Gamma_{1} \cup \Gamma_{2} \vdash (t)u:B}$$

Problem I (Atomless Boolean algebras):

We say that a Boolean algebra A is atomless if there are no atoms in A. In all of this problem we will assume that A is a countable atomless Boolean algebra.

- I. Show that for all $a \in A$, if $a \neq 0$, then there exists $c_1, c_2 \in A \setminus \{0\}$ such that $c_1 \cup c_2 = a$ and $c_1 \cap c_2 = 0$.
- 2. Let *E* be the set of words on $\{0, 1\}$ and let $A = \{a_k : k \in \mathbb{N}\}$. Show that there exists elements $\varepsilon_w \in A$ for all $w \in E$ such that:
 - for all $w \in E$, $\varepsilon_w \neq 0$;
 - $\varepsilon_{\varnothing} = 1$, where \varnothing denotes the empty word;
 - for all $w \in E$, $\varepsilon_{w0} \cap \varepsilon_{w1} = 0$;
 - for all $w \in E$, $\varepsilon_{w0} \cup \varepsilon_{w1} = \varepsilon_w$;
 - for all w ∈ E such that |w| = k, if ε_w ∩ a_k ≠ 0 and ε_w ∩ a^c_k ≠ 0, then ε_{w1} = ε_w ∩ a_k and ε_{w0} = ε_w ∩ a^c_k.
- 3. Let $f \in \{0,1\}^{\mathbb{N}}$. We denote by $w_k(f)$ the word $f(0) \cdots f(k)$. Show that if $a \cap \varepsilon_{w_k(f)} = 0$ then for all $n \ge k$, $a \cap \varepsilon_{w_n(f)} = 0$ and if $a \cap \varepsilon_{w_k(f)} \ne 0$ then for all $n \le k$, $a \cap \varepsilon_{w_n(f)} \ne 0$.
- 4. Let $f \in \{0,1\}^{\mathbb{N}}$ and $a \in A$. Show that one and only one of the following statements hold:
 - for all $n \in \mathbb{N}$, $\varepsilon_{w_n(f)} \cap a \neq 0$;
 - for all $n \in \mathbb{N}$, $\varepsilon_{w_n(f)} \cap a^{\mathbf{c}} \neq 0$.
- 5. Let $f \in \{0,1\}^{\mathbb{N}}$. We define $U_f = \{a \in A : \forall n \in \mathbb{N}, \varepsilon_{w_n(f)} \cap a \neq 0\}$. Show that U_f is an ultrafilter on A.
- 6. Let U be an ultrafilter on A, show that there exist words $(w_n)_{n \in \mathbb{N}}$ such that:
 - |*w*| = *n*;
 - w_n is a prefix of w_{n+1} (i.e. the first *n* letters of w_{n+1});
 - $\varepsilon_{w_n} \in U$.
- 7. Let $h: \{0,1\}^{\mathbb{N}} \to \mathcal{S}(A)$ be defined by $h(f) = U_f$. Show that h is a bijection.

Problem 2 (Model theory of \mathbb{Z}):

Let $\mathcal{Z} = \{\mathbb{Z}, 0, 1, +, -, \cdot, <\}$ where the symbols are interpreted with their standard interpretation. Let $\overline{n} = 1 + \dots + 1$ *n*-times if $n \in \mathbb{N}_{>0}, \overline{0} = 0$ and $\overline{n} = -(\overline{-n})$ otherwise.

I. Show that there exists $\mathcal{M} \equiv \mathcal{Z}$ and $a \in \mathcal{M}$ such that $\overline{n}^{\mathcal{M}}$ divides a for all $n \in \mathbb{Z} \setminus \{0\}$ (Recall that, a divides b if there exists c such that $b = a \cdot c$).

Hint: Add a new constant to the language.

- 2. Let $\mathcal{M} \equiv \mathcal{Z}$ and $\varphi(x)$ be a formula. Show that if $\mathcal{M} \models \varphi(\overline{n})$ for all $n \in \mathbb{Z}$, then $\mathcal{M} \models \forall x \varphi(x)$.
- 3. Let $\mathcal{M} \equiv \mathcal{Z}$ not be isomorphic to \mathcal{Z} . Show that $\{\overline{n}^{\mathcal{M}} : n \in \mathbb{Z}\} \subseteq M$ is not definable.

Problem 3 (Axiomatizability of equivalence relations):

Let $\mathcal{L} = \{E\}$. Which of the following classes of \mathcal{L} -structures are axiomatizable/finitely axiomatizable (for each example if they are axiomatizable/finitely axiomatizable give a theory that does so and if they are not give a proof of that fact that they are not; if the class is axiomatizable but not finitely so, you should give an infinite theory axiomatizing it and a proof that no finite theory works).

- I. The class of all \mathcal{L} -structures where E is an equivalence relation;
- 2. The class of all \mathcal{L} -structures where E is an equivalence relation with finitely many classes;
- 3. The class of all \mathcal{L} -structures where E is an equivalence relation whose classes are finite;
- 4. The class of all \mathcal{L} -structures where E is an equivalence relation with two infinite classes;
- 5. The class of all \mathcal{L} -structures where E is an equivalence relation with exactly one class of size n for all $n \in \mathbb{N}_{>0}$ (and possibly some infinite classes).

Problem 4 (λ -calculus) :

- I. Let $A \in W$ be a type variable. Which are the normal λ -terms t such that $\vdash t : (A \rightarrow A) \rightarrow A$?
- 2. Let $A \in W$ be a type variable. Which are the normal λ -terms t such that $\vdash t : (A \rightarrow A) \rightarrow (A \rightarrow A)$?
- 3. Let $t \in \Lambda$, $A \in T$ and Γ be a context. Assume that $\Gamma \vdash t : A$. Show that for all $u \in sub(t)$, there exists a context Γ' and $A' \in T$ such that $\Gamma' \vdash u : A'$ holds.
- 4. Let $Y = \lambda f(\lambda x(f)(x)x)\lambda x(f)(x)x$ and $t \in \Lambda$. Show that (Y)t is β -equivalent to (t)(Y)t
- 5. Is there a type $A \in T$ and a context Γ such that $\Gamma \vdash Y : A$ holds.