Final exam

December I8th

Remember that you can always assume a previous question (even if you have not proved it) to prove a later one.
Here are the typing rules for simply typed λ-calculus:

$$
\begin{gathered}
(\mathrm{Ax}) \frac{}{\Gamma \cup\{x: A\} \vdash x: A} \\
\left(\rightarrow_{I}\right) \frac{\Gamma \cup\{x: A\} \vdash t: B}{\Gamma \vdash \lambda x t: A \rightarrow B} \quad\left(\rightarrow_{E}\right) \frac{\Gamma_{1} \vdash t: A \rightarrow B \quad \Gamma_{2} \vdash u: A}{\Gamma_{1} \cup \Gamma_{2} \vdash(t) u: B}
\end{gathered}
$$

Problem I (Atomless Boolean algebras) :
We say that a Boolean algebra A is atomless if there are no atoms in A. In all of this problem we will assume that A is a countable atomless Boolean algebra.
I. Show that for all $a \in A$, if $a \neq 0$, then there exists $c_{1}, c_{2} \in A \backslash\{0\}$ such that $c_{1} \cup c_{2}=a$ and $c_{1} \cap c_{2}=0$.
2. Let E be the set of words on $\{0,1\}$ and let $A=\left\{a_{k}: k \in \mathbb{N}\right\}$. Show that there exists elements $\varepsilon_{w} \in A$ for all $w \in E$ such that:

- for all $w \in E, \varepsilon_{w} \neq 0$;
- $\varepsilon_{\varnothing}=1$, where \varnothing denotes the empty word;
- for all $w \in E, \varepsilon_{w 0} \cap \varepsilon_{w 1}=0$;
- for all $w \in E, \varepsilon_{w 0} \cup \varepsilon_{w 1}=\varepsilon_{w}$;
- for all $w \in E$ such that $|w|=k$, if $\varepsilon_{w} \cap a_{k} \neq 0$ and $\varepsilon_{w} \cap a_{k}^{\mathbf{c}} \neq 0$, then $\varepsilon_{w 1}=\varepsilon_{w} \cap a_{k}$ and $\varepsilon_{w 0}=\varepsilon_{w} \cap a_{k}^{\mathrm{c}}$.

3. Let $f \in\{0,1\}^{\mathbb{N}}$. We denote by $w_{k}(f)$ the word $f(0) \cdots f(k)$. Show that if $a \cap \varepsilon_{w_{k}(f)}=0$ then for all $n \geqslant k, a \cap \varepsilon_{w_{n}(f)}=0$ and if $a \cap \varepsilon_{w_{k}(f)} \neq 0$ then for all $n \leqslant k, a \cap \varepsilon_{w_{n}(f)} \neq 0$.
4. Let $f \in\{0,1\}^{\mathbb{N}}$ and $a \in A$. Show that one and only one of the following statements hold:

- for all $n \in \mathbb{N}, \varepsilon_{w_{n}(f)} \cap a \neq 0$;
- for all $n \in \mathbb{N}, \varepsilon_{w_{n}(f)} \cap a^{\mathbf{c}} \neq 0$.

5. Let $f \in\{0,1\}^{\mathbb{N}}$. We define $U_{f}=\left\{a \in A: \forall n \in \mathbb{N}, \varepsilon_{w_{n}(f)} \cap a \neq 0\right\}$. Show that U_{f} is an ultrafilter on A.
6. Let U be an ultrafilter on A, show that there exist words $\left(w_{n}\right)_{n \in \mathbb{N}}$ such that:

- $|w|=n$;
- w_{n} is a prefix of w_{n+1} (i.e. the first n letters of w_{n+1});
- $\varepsilon_{w_{n}} \in U$.

7. Let $h:\{0,1\}^{\mathbb{N}} \rightarrow \mathcal{S}(A)$ be defined by $h(f)=U_{f}$. Show that h is a bijection.

Problem 2 (Model theory of \mathbb{Z}):
Let $\mathcal{Z}=\{\mathbb{Z}, 0,1,+,-, \cdot,<\}$ where the symbols are interpreted with their standard interpretation. Let $\bar{n}=1+\cdots+1 n$-times if $n \in \mathbb{N}_{>0}, \overline{0}=0$ and $\bar{n}=-(\overline{-n})$ otherwise.
I. Show that there exists $\mathcal{M} \equiv \mathcal{Z}$ and $a \in \mathcal{M}$ such that $\bar{n}^{\mathcal{M}}$ divides a for all $n \in \mathbb{Z} \backslash\{0\}$ (Recall that, a divides b if there exists c such that $b=a \cdot c$).

Hint: Add a new constant to the language.
2. Let $\mathcal{M} \equiv \mathcal{Z}$ and $\varphi(x)$ be a formula. Show that if $\mathcal{M} \vDash \varphi(\bar{n})$ for all $n \in \mathbb{Z}$, then $\mathcal{M} \vDash$ $\forall x \varphi(x)$.
3. Let $\mathcal{M} \equiv \mathcal{Z}$ not be isomorphic to \mathcal{Z}. Show that $\left\{\bar{n}^{\mathcal{M}}: n \in \mathbb{Z}\right\} \subseteq M$ is not definable.

Problem 3 (Axiomatizability of equivalence relations) :
Let $\mathcal{L}=\{E\}$. Which of the following classes of \mathcal{L}-structures are axiomatizable/finitely axiomatizable (for each example if they are axiomatizable/finitely axiomatizable give a theory that does so and if they are not give a proof of that fact that they are not; if the class is axiomatizable but not finitely so, you should give an infinite theory axiomatizing it and a proof that no finite theory works).
I. The class of all \mathcal{L}-structures where E is an equivalence relation;
2. The class of all \mathcal{L}-structures where E is an equivalence relation with finitely many classes;
3. The class of all \mathcal{L}-structures where E is an equivalence relation whose classes are finite;
4. The class of all \mathcal{L}-structures where E is an equivalence relation with two infinite classes;
5. The class of all \mathcal{L}-structures where E is an equivalence relation with exactly one class of size n for all $n \in \mathbb{N}_{>0}$ (and possibly some infinite classes).

Problem 4 (λ-calculus) :
I. Let $A \in W$ be a type variable. Which are the normal λ-terms t such that $\vdash t:(A \rightarrow$ $A) \rightarrow A$?
2. Let $A \in W$ be a type variable. Which are the normal λ-terms t such that $\vdash t:(A \rightarrow$ $A) \rightarrow(A \rightarrow A)$?
3. Let $t \in \Lambda, A \in T$ and Γ be a context. Assume that $\Gamma \vdash t: A$. Show that for all $u \in \operatorname{sub}(t)$, there exists a context Γ^{\prime} and $A^{\prime} \in T$ such that $\Gamma^{\prime} \vdash u: A^{\prime}$ holds.
4. Let $Y=\lambda f(\lambda x(f)(x) x) \lambda x(f)(x) x$ and $t \in \Lambda$. Show that $(Y) t$ is β-equivalent to $(t)(Y) t$
5. Is there a type $A \in T$ and a context Γ such that $\Gamma \vdash Y: A$ holds.

