Homework 1

Due September 10th

Problem 1 (Tautologies) : We have to do truth tables:

	A	B	[A	$\rightarrow B$]	[[A	$[\rightarrow B] \land A]$		$\boxed{\left[\left[A \to B\right]\right]}$	$[\land A] \to B$]]
	0	0		I		0		I		
I.	I	0	0		0			I		
	0	I	Ι		0			I		
	I	I	I		I			I		
	A	B	C	$[A \to B]$		$[C \to A]$	$[A \to B] \lor [C \to A]$			
	0	0	0	I		I	I			
	Ι	0	0	0		I	I			
	0	I	0	I		I	I			
2.	Ι	I	0	I		I	I			
	0	0	I	I		0	I			
	I	0	I	0		I	I			
	0	I	I	I		0	I			
	I	I	I	I		I	I			
				-						
	A	B	C	$[A \land B]$	3]	$[A \land B] \land 0$	2	$[B \land C]$	$A \wedge [B]$	$\land C$]
3.	0	0	0	0		0		0	0	
	Ι	0	0	0		0		0	0	
	0	I	0	0		0		0	0	
	Ι	I	0	Ι		0		0	0	
	0	0	I	0		0		0	0	
	I	0	I	0		0		0	0	
	0	I	I	0		0		I	0	
	Ι	I	I	I		I		I	I	

And we can check that column 5 and 7 are the same.

	A	B	$[A \land B]$	$A \lor [A \land B]$
	0	0	0	0
4.	I	0	о	I
	0	Ι	0	0
	I	I	I	I

And we can check that column 1 and 4 are the same.

	A	B	C	$[A \land B]$	$[A \land B] \to C$	$[B \to C]$	$A \to [B \to C]$
	0	0	0	0	I	I	I
	I	0	0	0	I	I	I
	0	Ι	0	0	I	0	I
5.	I	Ι	0	I	0	0	0
	0	0	I	0	I	I	I
	I	0	I	0	I	I	I
	0	I	I	0	I	I	I
	I	I	I	I	I	Ι	I

And we can check that column 5 and 7 are the same.

Problem 2 (Independent formulas) :

- I. Let us prove both implications:
- (a) \Rightarrow (b) Let us assume that A and B are logically equivalent. Let φ be a formula such that $A \models \varphi$ and $\delta \in \{0, 1\}^P$ be an assignment. Let us assume that δ staisfies B. For any $\psi \in A$, we have $B \models \psi$ and hence δ satisfies ψ . We have just shown that δ satisfies A. It follows, because $A \models \varphi$, that δ satisfies φ . We conclude by symmetry that $B \models \varphi$ implies $A \models \varphi$.
- (b) \Rightarrow (a) Let us assume that $A \models \varphi$ if and only if $B \models \varphi$. Now, let $\varphi \in A$, then $A \models \varphi$ and hence $B \models \varphi$. We conclude by symmetry.
- 2. We proceed by induction on the cardinality of *A*. Note that if $A = \emptyset$ then it is logically independent and logically equivalent to itself. Now assume we have proved the question for |A| = n and let *A* be such that |A| = n + 1. If *A* is logically independent and logically equivalent to itself so B = A. Now, if *A* is not logically independent, there exists $\varphi \in A$ such that $A \setminus \varphi \models \varphi$. Then $A \setminus \varphi$ is logically equivalent to *A* and, by induction there exists $B \subseteq A \setminus \varphi$ such that *B* is logically independent and logically equivalent to *A*.
- 3. Let $A = \{\bigwedge_{i=0}^{n} X_i : n \in \mathbb{N}\}$ and let $B \subseteq A$ have at least two elements. Then B contains $\bigwedge_{i=0}^{n_1} X_i$ and $\bigwedge_{i=0}^{n_2} X_i$ for some $n_1 \leq n_2$. But $\bigwedge_{i=0}^{n_2} X_i \models \bigwedge_{i=0}^{n_1} X_i$ and so B cannot be independent. Hence if $B \subseteq A$ is independent, |B| = 1, i.e. $B = \bigwedge_{i=0}^{n} X_i$ for some n. But one can check that $\bigwedge_{i=0}^{n} X_i \nvDash \bigwedge_{i=0}^{n+1} X_i$. Indeed, consider δ defined by $\delta(X_i) = 1$ if $i \leq n$ and $\delta(X_{n+1}) = 0$, then δ satisfies $\bigwedge_{i=0}^{n} X_i$, but not $\bigwedge_{i=0}^{n+1} X_i$. It follows that B is not logically equivalent to A.

Problem 3 (Totally ordered sets) :

I. Let $A(S) = \{\neg X_{s,s} : s \in S\} \cup \{[X_{s,t} \land X_{t,u}] \rightarrow X_{s,u} : s, t, u \in S\} \cup \{X_{s,t} \lor X_{t,s} : s, t \in S \text{ distinct}\} \cup \{X_{s,t} : s, t \in S \text{ such that } s < t\}$. Let $\delta \in \{0, 1\}^P$ satisfy A(S), then for every $s \in S$, $(\neg X_{s,s})_{\delta} = 1$ and hence $\delta(X_{s,s}) = 0$. It follows that $s <_{\delta} s$ does not hold.

Moreover, let s, t and $u \in S$ be such that $s <_{\delta} t$ and $t <_{\delta} u$. Then by definition of $<_{\delta}$, we have $\delta(X_{s,t}) = 1$ and $\delta(X_{t,u}) = 1$. It follows from the semantic of \rightarrow that if $([X_{s,t} \land X_{t,u}] \rightarrow X_{s,u})_{\delta} = 1$, then $\delta(X_{s,u}) = 1$ and hence $s <_{\delta} u$. We have just proved that $<_{\delta}$ is an order.

Now, let *s* and $t \in S$ be distinct, then $(X_{s,t} \vee X_{t,s})_{\delta} = 1$ and hence either $\delta(X_{s,t}) = 1$ (in which case $s <_{\delta} t$) or $\delta(X_{t,s}) = 1$ (in which case $t <_{\delta} s$). It follows that $<_{\delta}$ is a total order.

Finally, let s, t in S be such that s < t, then $\delta(X_{s,t}) = 1$ and hence $s <_{\delta} t$, i.e. $<_{\delta}$ extends <.

2. If there is a total order on S extending < then its restriction to any finite S_0 is a total order on S_0 extending <. So one implication is trivial. Let us prove the other one and let us assume that for every S_0 , $(S_0, <)$ can be extended to a total order on S_0 .

By the previous question, there exists a total order on S extendeng < if the set A(S) is satisfiable. By compactness, A(S) is satisfiable if and only if every finite subset of A(S) is. Let $A_0 \subseteq A(S)$ be finite and let $S_0 \subseteq S$ be the set of s such that $X_{s,t}$ or $X_{t,s}$ appear in A_0 for some $t \in S$. Then, because A_0 is finite, S_0 is finite too. By hypothesis, $(S_0, <)$ can be extended to a total order on S_0 and so by the previous question $A(S_0)$ is satisfiable. But it is easy to check that $A_0 \subseteq A(S_0)$ so A_0 is also satisfiable. That concludes the proof.