Homework I

Due September ioth

Problem I (Tautologies) :
We have to do truth tables:
I.

A	B	$[A \rightarrow B]$	$[[A \rightarrow B] \wedge A]$	$[[A \rightarrow B] \wedge A] \rightarrow B]$
O	O	I	o	I
I	o	o	o	I
o	I	I	o	I
I	I	I	I	I

2. | A | B | C | $[A \rightarrow B]$ | $[C \rightarrow A]$ | $[A \rightarrow B] \vee[C \rightarrow A]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O | O | O | I | I | I |
| I | o | o | o | I | I |
| o | I | o | I | I | I |
| I | I | o | I | I | I |
| o | o | I | I | o | I |
| I | O | I | O | I | I |
| O | I | I | I | o | I |
| I | I | I | I | I | I |

$3 .$| A | B | C | $[A \wedge B]$ | $[A \wedge B] \wedge C$ | $[B \wedge C]$ | $A \wedge[B \wedge C]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O | o | o | o | o | o | o |
| I | o | o | o | o | o | o |
| o | I | o | o | o | o | o |
| I | I | o | I | o | o | o |
| o | o | I | o | o | o | o |
| I | o | I | o | o | o | o |
| o | I | I | o | o | I | o |
| I | I | I | I | I | I | I |

And we can check that column 5 and 7 are the same.

$4 .$| A | B | $[A \wedge B]$ | $A \vee[A \wedge B]$ |
| :---: | :---: | :---: | :---: |
| o | o | o | o |
| I | o | o | I |
| o | I | o | o |
| I | I | I | I |

And we can check that column I and 4 are the same.

$5 .$| A | B | C | $[A \wedge B]$ | $[A \wedge B] \rightarrow C$ | $[B \rightarrow C]$ | $A \rightarrow[B \rightarrow C]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O | o | o | o | I | I | I |
| I | o | o | o | I | I | I |
| o | I | o | o | I | o | I |
| I | I | o | I | o | o | o |
| o | o | I | o | I | I | I |
| I | o | I | o | I | I | I |
| o | I | I | o | I | I | I |
| I | I | I | I | I | I | I |

And we can check that column 5 and 7 are the same.

Problem 2 (Independent formulas) :
I. Let us prove both implications:
(a) \Rightarrow (b) Let us assume that A and B are logically equivalent. Let φ be a formula such that $A \vDash \varphi$ and $\delta \in\{0,1\}^{P}$ be an assignement. Let us assume that δ staisfies B. For any $\psi \in A$, we have $B \vDash \psi$ and hence δ satisfies ψ. We have just shown that δ satisfies A. It follows, because $A \vDash \varphi$, that δ satisfies φ. We conclude by symmetry that $B \vDash \varphi$ implies $A \vDash \varphi$.
(b) \Rightarrow (a) Let us assume that $A \vDash \varphi$ if and only if $B \vDash \varphi$. Now, let $\varphi \in A$, then $A \vDash \varphi$ and hence $B \vDash \varphi$. We conclude by symmetry.
2. We proceed by induction on the cardinality of A. Note that if $A=\varnothing$ then it is logically independent and logically equivalent to itself. Now assume we have proved the question for $|A|=n$ and let A be such that $|A|=n+1$. If A is logically independent and logically equivalent to itself so $B=A$. Now, if A is not logically independent, there exists $\varphi \in A$ such that $A \backslash \varphi \vDash \varphi$. Then $A \backslash \varphi$ is logically equivalent to A and, by induction there exists $B \subseteq A \backslash \varphi$ such that B is logically independent and logically equivalent to $A \backslash \varphi$ and hence to A.
3. Let $A=\left\{\bigwedge_{i=0}^{n} X_{i}: n \in \mathbb{N}\right\}$ and let $B \subseteq A$ have at least two elements. Then B contains $\bigwedge_{i=0}^{n_{1}} X_{i}$ and $\bigwedge_{i=0}^{n_{2}} X_{i}$ for some $n_{1} \leqslant n_{2}$. But $\bigwedge_{i=0}^{n_{2}} X_{i} \vDash \bigwedge_{i=0}^{n_{1}} X_{i}$ and so B cannot be independent. Hence if $B \subseteq A$ is independent, $|B|=1$, i.e. $B=\bigwedge_{i=0}^{n} X_{i}$ for some n. But one can check that $\bigwedge_{i=0}^{n} X_{i} \not \approx \bigwedge_{i=0}^{n+1} X_{i}$. Indeed, consider δ defined by $\delta\left(X_{i}\right)=1$ if $i \leqslant n$ and $\delta\left(X_{n+1}\right)=0$, then δ satisfies $\bigwedge_{i=0}^{n} X_{i}$, but not $\bigwedge_{i=0}^{n+1} X_{i}$. It follows that B is not logically equivalent to A.

Problem 3 (Totally ordered sets) :
I. Let $A(S)=\left\{\neg X_{s, s}: s \in S\right\} \cup\left\{\left[X_{s, t} \wedge X_{t, u}\right] \rightarrow X_{s, u}: s, t, u \in S\right\} \cup\left\{X_{s, t} \vee X_{t, s}: s, t \in S\right.$ distinct $\} \cup\left\{X_{s, t}: s, t \in\right.$ S such that $s<t\}$. Let $\delta \in\{0,1\}^{P}$ satisfy $A(S)$, then for every $s \in S,\left(\neg X_{s, s}\right)_{\delta}=1$ and hence $\delta\left(X_{s, s}\right)=0$. It follows that $s<_{\delta} s$ does not hold.
Moreover, let s, t and $u \in S$ be such that $s<_{\delta} t$ and $t<_{\delta} u$. Then by definition of $<_{\delta}$, we have $\delta\left(X_{s, t}\right)=1$ and $\delta\left(X_{t, u}\right)=1$. It follows from the semantic of \rightarrow that if $\left(\left[X_{s, t} \wedge X_{t, u}\right] \rightarrow X_{s, u}\right)_{\delta}=1$, then $\delta\left(X_{s, u}\right)=1$ and hence $s<_{\delta} u$. We have just proved that $<_{\delta}$ is an order.
Now, let s and $t \in S$ be distinct, then $\left(X_{s, t} \vee X_{t, s}\right)_{\delta}=1$ and hence either $\delta\left(X_{s, t}\right)=1$ (in which case $s<_{\delta} t$) or $\delta\left(X_{t, s}\right)=1$ (in which case $\left.t<_{\delta} s\right)$. It follows that $<_{\delta}$ is a total order.
Finally, let s, t in S be such that $s<t$, then $\delta\left(X_{s, t}\right)=1$ and hence $s<_{\delta} t$, i.e. $<_{\delta}$ extends $<$.
2. If there is a total order on S extending < then its restriction to any finite S_{0} is a total order on S_{0} extending $<$. So one implication is trivial. Let us prove the other one and let us assume that for every $S_{0},\left(S_{0},<\right)$ can be extended to a total order on S_{0}.
By the previous question, there exists a total order on S extendeng < if the set $A(S)$ is satisfiable. By compactness, $A(S)$ is satisfiable if anf only if every finite subset of $A(S)$ is. Let $A_{0} \subseteq A(S)$ be finite and let $S_{0} \subseteq S$ be the set of s such that $X_{s, t}$ or $X_{t, s}$ appear in A_{0} for some $t \in S$. Then, because A_{0} is finite, S_{0} is finite too. By hypothesis, ($S_{0},<$) can be extended to a total order on S_{0} and so by the previous question $A\left(S_{0}\right)$ is satisfiable. But it is easy to check that $A_{0} \subseteq A\left(S_{0}\right)$ so A_{0} is also satisfiable. That concludes the proof.

