Homework 1

Due September 10th

Problem 1 (Tautologies) : Prove that the following formulas are tautologies:

I.
$$[[A \rightarrow B] \land A] \rightarrow B];$$

2.
$$[A \rightarrow B] \lor [C \rightarrow A]$$

Prove that the following formulas are logically equivalent:

- 3. $[A \land B] \land C$ and $A \land [B \land C]$;
- 4. A and $A \lor [A \land B]$;
- 5. $[A \land B] \rightarrow C$ and $A \rightarrow [B \rightarrow C]$.

Problem 2 (Independent formulas) :

Let *A* and *B* be two sets of formulas. We say that *A* implies *B* if for all $\varphi \in B$, $A \models \varphi$. We say that *A* is equivalent to *B* is *A* implies *B* and *B* implies *A*. And finally, we say that *A* is logically independent if for every $\varphi \in A$, $A \setminus \{\varphi\} \not\models \varphi$.

- I. Show that the following are equivalent:
 - (a) *A* and *B* are logically equivalent;
 - (b) for all formula $\varphi \in F$, $A \models \varphi$ if and only if $B \models \varphi$.
- 2. Show that if A is finite, then there exists an independent set $B \subseteq A$ which is logically equivalent to A.
- 3. Does the infinite set $\{\bigwedge_{i=0}^{n} X_i : n \in \mathbb{N}\}$ have an equivalent and independent subset (the X_i are propositional variables)?

Problem 3 (Totally ordered sets) :

Recall that a (strict) order on a set S is a binary relation < on S such that:

- For all $s \in S$, we do not have s < s;
- For all $s, t, u \in S$, if s < t and t < u then s < u.

An order (S, <) is said to be total if for every s and $t \in X$, if $s \neq t$, we have s < t or t < s. Let $<_1$ and $<_2$ be two orders on S, we say that $<_2$ extends $<_1$ if for all s and $t \in S$, if $s <_1 t$ then $s <_2 t$.

Let (S, <) be some ordered set and let $P = \{X_{s,t} : s, t \in S\}$. Let $\delta : P \to \{0, 1\}$ be an assignement. We define the relation $<_{\delta}$ on S by $s <_{\delta} t$ if and only if $\delta(X_{s,t}) = 1$.

- (i) Find a set of formulas A (with variables in P) such that A is satisfied by δ if and only if $<_{\delta}$ is a total order extending <.
- (ii) Show that there exists a total order <' on S extending < if and only if for every finite $S_0 \subseteq S$, the order $(S_0, <)$ can be extended to a total order on S_0 .

In fact statement (ii) is always true and hence so every order can be extended to a total order.