Homework I

Due September ioth

Problem I (Tautologies) :
Prove that the following formulas are tautologies:
I. $[[A \rightarrow B] \wedge A] \rightarrow B]$;
2. $[A \rightarrow B] \vee[C \rightarrow A]$.

Prove that the following formulas are logically equivalent:
3. $[A \wedge B] \wedge C$ and $A \wedge[B \wedge C]$;
4. A and $A \vee[A \wedge B]$;
5. $[A \wedge B] \rightarrow C$ and $A \rightarrow[B \rightarrow C]$.

Problem 2 (Independent formulas) :
Let A and B be two sets of formulas. We say that A implies B if for all $\varphi \in B, A \vDash \varphi$. We say that A is equivalent to B is A implies B and B implies A. And finally, we say that A is logically independent if for every $\varphi \in A, A \backslash\{\varphi\} \nLeftarrow \varphi$.
I. Show that the following are equivalent:
(a) A and B are logically equivalent;
(b) for all formula $\varphi \in F, A \vDash \varphi$ if and only if $B \vDash \varphi$.
2. Show that if A is finite, then there exists an independent set $B \subseteq A$ which is logically equivalent to A.
3. Does the infinite set $\left\{\bigwedge_{i=0}^{n} X_{i}: n \in \mathbb{N}\right\}$ have an equivalent and independent subset (the X_{i} are propositional variables)?

Problem 3 (Totally ordered sets) :
Recall that a (strict) order on a set S is a binary relation < on S such that:

- For all $s \in S$, we do not have $s<s$;
- For all $s, t, u \in S$, if $s<t$ and $t<u$ then $s<u$.

An order $(S,<)$ is said to be total if for every s and $t \in X$, if $s \neq t$, we have $s<t$ or $t<s$. Let $<_{1}$ and $<_{2}$ be two orders on S, we say that $<_{2}$ extends $<_{1}$ if for all s and $t \in S$, if $s<_{1} t$ then $s<_{2} t$.
Let $(S,<)$ be some ordered set and let $P=\left\{X_{s, t}: s, t \in S\right\}$. Let $\delta: P \rightarrow\{0,1\}$ be an assignement. We define the relation $<_{\delta}$ on S by $s<_{\delta} t$ if and only if $\delta\left(X_{s, t}\right)=1$.
(i) Find a set of formulas A (with variables in P) such that A is satisfied by δ if and only if $<_{\delta}$ is a total order extending < .
(ii) Show that there exists a total order $<^{\prime}$ on S extending < if and only if for every finite $S_{0} \subseteq S$, the order $\left(S_{0},<\right)$ can be extended to a total order on S_{0}.

In fact statement (ii) is always true and hence so every order can be extended to a total order.

