Homework 2

Due September I7th

Problem I:

I. Let $a_{n}=\left|F_{n}\right|$. Then $a_{0}=\left|F_{0}\right|=|P|=6$ and $a_{n+1}=\left|F_{n+1}\right|=\left|F_{n}\right|+\left|\left\{\neg \varphi: \varphi \in F_{n}\right\}\right| \cup \mid\left\{\left[\varphi_{1} \square \varphi_{2}\right]: \varphi_{i} \in\right.$ F_{n} and $\left.\square \in\{\wedge, \vee \rightarrow, \leftrightarrow\}\right\} \mid=2 a_{n}+4 a_{n}^{2} \leqslant 5 a_{n}^{2}$.
Let us show, by induction on n that $a_{n} \leqslant 5^{2^{n}-1} 6^{2^{n}}$. We have $a_{0}=6=5^{2^{0}-1} 6^{2^{0}}$ and if we assume $a_{n} \leqslant 5^{2^{n}-1} 6^{2^{n}}$ then $a_{n+1} \leqslant 5\left(5^{2^{n}-1} 6^{2^{n}}\right)^{2}=5^{1+2\left(2^{n}-1\right)} 6^{2 \cdot 2^{n}}=5^{2^{n+1}-1} 6^{2^{n+1}}$.
2. There are $2^{2^{6}}=2^{64}$ functions from $\{0,1\}^{P}$ to $\{0,1\}$ and $5^{2^{3}-1} 6^{2^{3}} \leqslant 30^{2^{3}} \leqslant 32^{8}=2^{40}$ formulas of height at most 3 . So there are less than 2^{40} possible interpretations of formulas of height at most 3 hence. But we know that every function from $\{0,1\}^{P}$ to $\{0,1\}$ is a possible interpretation. It follows that some functions f can only interpret formulas of height at least 4 .

Problem 2:

I. We have to show that \vee can be interpreted using \rightarrow and \neg. But $X \vee Y$ is logically equivalent to $\neg X \rightarrow Y$. Hence $\{\rightarrow, \neg\}$ is complete.
We proved in classe that $\{\neg\}$ is not complete so there only remains to show that $\{\rightarrow\}$ is not complete. But $X \rightarrow X$ is logically equivalent to X so the only function $\{0,1\} \rightarrow\{0,1\}$ that is the interpretation of a formula containing only \rightarrow is the identity. Thus $\{\rightarrow\}$ is not complete.
2. Let us prove by induction on formulas in two variables X and Y containing only \leftrightarrow and \neg that the interpretation of such a formula takes an even number of times the value 1 .
The formulas X and Y take the value 1 half the time (i.e when X, respectively Y, is true), that is 2 times out of 4 .
If the formula φ has this property then because there are 4 possible assignements, the interpretation of φ also takes the value 0 an even number of time. Hence the interpretation of $\neg \varphi$ takes the value 1 an even number of times too.
Let φ_{1} and φ_{2} be two formulas whose interpretations take the value 1 an even number of times. Let $a_{\epsilon_{1}, \epsilon_{2}}$ be the number of times φ_{1} takes value ϵ_{1} while φ_{2} takes value ϵ_{2}. Then, by hypothesis $a_{1,1}+a_{1,0}$ (the number of times φ_{1} is evaluated to 1) is even and so is $a_{0,0}+a_{1,0}$ (the number of times φ_{2} is evaluated to 0). It follows that $a_{1,1}+2 a_{1,0}+a_{0,0}$ is even and hence so is $a_{1,1}+a_{0,0}$ which the number of times $\varphi_{1} \leftrightarrow \varphi_{2}$ takes the value 1.

But there are functions from $\{0,1\}^{2} \rightarrow\{0,1\}$ that take the value 1 an odd number of times. So $\{\neg, \leftrightarrow\}$ cannot be complete.
3. The previous question yields such a set of connectives. There are exactly 8 binary connectives whose interpretation takes value 1 an even number of times. They are the interpretation of the following functions with variables in X and Y :

- X;
- Y;
- $\neg X$;
- $\neg Y$;
- $X \leftrightarrow Y$;
- $\neg X \leftrightarrow Y$;
- $X \leftrightarrow \neg Y$;
- $\neg X \leftrightarrow \neg Y$.

Because the set $\{\neg, \leftrightarrow\}$ is not complete, this set of 8 connectives cannot be either.
There are other ways of building such a set of connectives, let me give two others (and I am sure you can come up with many more).
Consider the 8 binary connectives that send $(1,1)$ to 1 . Then one can show by an easy induction that any composition of these connectives also send $(1, \ldots, 1)$ to 1 . In particular these formulas cannot interpret \neg. Similarly one could the 8 binary connectives that send $(0,0)$ to 0 .

