Homework 2

Due September 17th

Problem I:
Let $P=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$.
I. Show that there are at most $30^{2^{n}}$ formulas of height n (this is a very rough estimate).
2. Show that there is a function $f:\{0,1\}^{P} \rightarrow\{0,1\}$ such that any formula whose interpretation is f has height at least 4.

Problem 2 :

I. Show that the set $\{\rightarrow, \neg\}$ is a minimal complete set of connectives.
2. Show that $\{\leftrightarrow, \neg\}$ is not a complete set of connectives.
3. Find a set of 8 distinct binary connectives which is not complete.

