Homework 2

Due September 17th

Problem 1:

Let $P = \{X_1, X_2, X_3, X_4, X_5, X_6\}.$

- I. Show that there are at most 30^{2^n} formulas of height *n* (this is a very rough estimate).
- 2. Show that there is a function $f : \{0,1\}^P \to \{0,1\}$ such that any formula whose interpretation is f has height at least 4.

Problem 2 :

- I. Show that the set $\{ \rightarrow, \neg \}$ is a minimal complete set of connectives.
- 2. Show that $\{\leftrightarrow, \neg\}$ is not a complete set of connectives.
- 3. Find a set of 8 distinct binary connectives which is not complete.