Homework 3

Due September 24th

Problem I (Derivations):

Prove (by providing a derivation and not by using the completeness theorem) that the following hold:

$$I. \vdash (X \to Y) \to ((Y \to Z) \to (X \to Z));$$

2. $\{X \to Y, X \to Z\} \vdash X \to (Y \land Z).$

Let $\Gamma \subseteq F$, φ and $\psi \in F$. Prove the following (without using the completness theorem):

- 3. If $\Gamma \cup \{A\} \vdash \neg A$ then $\Gamma \vdash \neg A$;
- 4. If $\varphi \vdash \psi$ holds, then $\neg \psi \vdash \neg \varphi$ holds;
- 5. If $\neg \psi \vdash \neg \varphi$ holds then $\varphi \vdash \psi$ holds.

Problem 2 (Substitutions) :

Let $\Gamma \subseteq F$, φ , ψ and $\theta \in F$ be such that $\Gamma \cup \{\psi\} \vdash \theta$, $\Gamma \cup \{\theta\} \vdash \psi$.

- I. Let δ satisfy Γ , then $(\varphi_{\psi/\theta})_{\delta} = (\varphi)_{\delta}$.
- 2. Assume $\Gamma \vdash \varphi$ then $\Gamma \vdash \varphi_{\psi/\theta}$.

Problem 3:

We want to add a new symbol \perp to our logic (for the always false formula). So now formulas are word over the alphabet $P \land \{\neg, \land, \lor, \rightarrow, \leftrightarrow, \bot\}$ and \perp is a formula (and we still close under the same thing as before). For example, $[\bot \rightarrow X] \land Y$ is now a formula. We expand the notion of semantics to these new formulas by defining $\bot_{\delta} = 0$ for every assignment δ (and interpretation of more complicated formulas is defined by induction as usual). We also a new deduction rule (i.e. the set of valid deductions $\Gamma \vdash \varphi$ is closed under all the rules we add before plus this new one):

$$(\bot_E) \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$

where $\Gamma \subseteq F$ and $\varphi \in F$.

- I. Show that the new rule is sound (i.e. if its premise hold for \vDash then its conclusion also holds for \vDash).
- 2. Let $\varphi \in F$ (φ might contain \bot), show that the following hold:
 - a) $\vdash \bot \leftrightarrow (\varphi \land \neg \varphi);$ b) $\vdash \neg \varphi \leftrightarrow (\varphi \rightarrow \bot).$