Homework 4

Due October 1st

Problem 1 :

- a) In N₁ this formula is interpreted as: for all x and y ∈ N, x + (y + 1) = (x + y) + 1, which indeed holds.
 b) In N₂, it is interpreted the same way, except that x and y are now in Z, but it is also true.
 - c) In N_3 , it is interpreted as, for x and $y \in \mathbb{Z}$, $x \cdot (-y) < -(x \cdot y)$ which does not hold.
- a) In N₁, this formulas negates the symmetry of equality. Therefore it cannot hold.b) Similarly in N₂.
 - c) This formula holds in N_3 because for all x, x < x + 1 holds but x + 1 < x does not hold.
- a) This formula holds in N₁ because +1 is a function and so obviously if x = y, then x + 1 = y + 1.
 b) Similarly in N₂.
 - c) This formula does not hold in $N_{\rm 3}$ because reverses inequalities.
- 4. a) This formula holds in N_1 . Indeed, x = 0 is not of the form y + 1 for any y.
 - b) This formula does not hold in N_2 as $y \mapsto y + 1$ is onto in \mathbb{Z} .
 - c) This formula does not hold in N_3 . For any choice of x there is a z < x and hence -(-z) < x.
- 5. a) This formula does not hold in N_1 . Indeed no x exists such that x = x + 1.
 - b) Similarly in N_2
 - c) This formula does not hold in N_3 . Indeed the only x such that x = -x is 0 and in that case for all $y x \cdot y = 0$ which is not strictly smaller than 0.

Problem 2 :

- I. Let $\varphi = \forall x \exists y \, y < x$. This formula expresses that there does not exist a minimal element in the structure. Therefore, it holds in $(\mathbb{Z}, <)$ but not in $(\mathbb{N}, <)$.
- 2. Let $\varphi = \exists x \exists y (x < y \land \forall z \neg (x < z \land z < y))$. This formula holds in $(\mathbb{Z}, <)$. Take, for example x = 0 and y = 1 (or in fact any two successive integer). In $(\mathbb{Q}, <)$ that does not hold because there is a rational strictly between any two rational.
- 3. Let $\psi(x)$ be the formula $\exists y \, y + y = x$. Then $\mathbb{Z} \models \psi(a)$ if and only if a = 2k for some $k \in \mathbb{Z}$, i.e. a is even. So $\mathbb{Z} \models \neg \psi(a)$ if and only if a is odd.