Homework 4

Due October ist

Problem I:

I. a) In N_{1} this formula is interpreted as: for all x and $y \in \mathbb{N}, x+(y+1)=(x+y)+1$, which indeed holds.
b) $\ln N_{2}$, it is interpreted the same way, except that x and y are now in \mathbb{Z}, but it is also true.
c) In N_{3}, it is interpreted as, for x and $y \in \mathbb{Z}, x \cdot(-y)<-(x \cdot y)$ which does not hold.
2. a) In N_{1}, this formulas negates the symmetry of equality. Therefore it cannot hold.
b) Similarly in N_{2}.
c) This formula holds in N_{3} because for all $x, x<x+1$ holds but $x+1<x$ does not hold.
3. a) This formula holds in N_{1} because +1 is a function and so obviously if $x=y$, then $x+1=y+1$.
b) Similarly in N_{2}.
c) This formula does not hold in N_{3} because - reverses inequalities.
4. a) This formula holds in N_{1}. Indeed, $x=0$ is not of the form $y+1$ for any y.
b) This formula does not hold in N_{2} as $y \mapsto y+1$ is onto in \mathbb{Z}.
c) This formula does not hold in N_{3}. For any choice of x there is $\mathrm{a} z<x$ and hence $-(-z)<x$.
5. a) This formula does not hold in N_{1}. Indeed no x exists such that $x=x+1$.
b) Similarly in N_{2}
c) This formula does not hold in N_{3}. Indeed the only x such that $x=-x$ is 0 and in that case for all y $x \cdot y=0$ which is not strictly smaller than 0 .

Problem 2 :

I. Let $\varphi=\forall x \exists y y<x$. This formula expresses that there does not exist a minimal element in the structure. Therefore, it holds in $(\mathbb{Z},<)$ but not in $(\mathbb{N},<)$.
2. Let $\varphi=\exists x \exists y(x<y \wedge \forall z \neg(x<z \wedge z<y))$. This formula holds in $(\mathbb{Z},<)$. Take, for example $x=0$ and $y=1$ (or in fact any two successive integer). In $(\mathbb{Q},<)$ that does not hold because there is a rational strictly between any two rational.
3. Let $\psi(x)$ be the formula $\exists y y+y=x$. Then $\mathbb{Z} \vDash \psi(a)$ if and only if $a=2 k$ for some $k \in \mathbb{Z}$, i.e. a is even. So $\mathbb{Z} \vDash \neg \psi(a)$ if and only if a is odd.

