Homework 4
 Due October Ist

Problem I:

Let \mathcal{L} be the language consisting of a unary function symbol f, binary functions symbol g, and two binary predicate R. Let us consider the following \mathcal{L}-structures:

- N_{1} whose underlying set is \mathbb{N}, where f is interpreted as the function $x \mapsto x+1, g$ is interpreted as the addition, and R as the equality;
- N_{2} whose underlying set is \mathbb{Z}, where f is interpreted as the function $x \mapsto x+1, g$ is interpreted as the addition, and R as the equality;
- N_{3} whose underlying set is \mathbb{Z}, where f is interpreted as the function $x \mapsto-x, g$ is interpreted as the multiplication and R as the strict order.

For each of the following formulas, say in which of the above structures they are satisfied:
I. $\forall x \forall y g(x, f(y)) R f(g(x, y))$;
2. $\forall x \exists y(x R y \wedge \neg(y R x))$;
3. $\forall x \forall y(x R y \rightarrow f(x) R f(y))$;
4. $\exists x \neg(\exists y f(y) R x)$;
5. $\exists x((\forall y g(x, y) R x) \wedge f(x) R x)$.

Problem 2:

I. Find a sentence φ which is true in $(\mathbb{Z},<)$ but false in $(\mathbb{N},<)$;
2. Find a sentence φ which is true in $(\mathbb{Z},<)$ but false in $(\mathbb{Q},<)$;
3. Let M be the structure $(\mathbb{Z},=,+)$. Find a formula φ with a unique free variable x such that for any assignement $\delta, \varphi_{\delta}^{M}=1$ if and only if $\delta(x)$ is odd.

