Homework 4

Due October 1st

Problem 1:

Let \mathcal{L} be the language consisting of a unary function symbol f, binary functions symbol g, and two binary predicate R. Let us consider the following \mathcal{L} -structures:

- N_1 whose underlying set is \mathbb{N} , where f is interpreted as the function $x \mapsto x+1$, g is interpreted as the addition, and R as the equality;
- N_2 whose underlying set is \mathbb{Z} , where f is interpreted as the function $x \mapsto x+1$, g is interpreted as the addition, and R as the equality;
- N_3 whose underlying set is \mathbb{Z} , where f is interpreted as the function $x \mapsto -x$, g is interpreted as the multiplication and R as the strict order.

For each of the following formulas, say in which of the above structures they are satisfied:

- I. $\forall x \forall y g(x, f(y)) R f(g(x, y));$
- 2. $\forall x \exists y (xRy \land \neg (yRx));$
- 3. $\forall x \forall y (xRy \rightarrow f(x)Rf(y));$
- 4. $\exists x \neg (\exists y f(y) Rx);$
- 5. $\exists x ((\forall y g(x, y) Rx) \land f(x) Rx).$

Problem 2 :

- I. Find a sentence φ which is true in $(\mathbb{Z}, <)$ but false in $(\mathbb{N}, <)$;
- 2. Find a sentence φ which is true in $(\mathbb{Z}, <)$ but false in $(\mathbb{Q}, <)$;
- 3. Let M be the structure $(\mathbb{Z}, =, +)$. Find a formula φ with a unique free variable x such that for any assignment δ , $\varphi_{\delta}^{M} = 1$ if and only if $\delta(x)$ is odd.