Solutions to Homework 5

Due October 8th

Problem 1 :

1. Let us first prove that for any quantifier free formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $a_{1} \ldots, a_{n} \in N$, we have $\mathcal{N} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$. In fact, we first have to show that for any term $t\left(x_{1}, \ldots, x_{n}\right), t^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)=t^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)$, but that is an easy proof by induction: If $t=x_{i}$, then $t^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)=a_{i}=t^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)$, if $t=c, t^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)=c^{\mathcal{M}}=c^{\mathcal{M}}=t^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)$ and if $t=$ $f t_{1} \ldots t_{k}$, then $t^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathcal{M}}\left(t_{1}^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{k}^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{N}}\left(t_{1}^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{k}^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)\right)=$ $t^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)$.
The result for φ is also proved by induction on φ. If $\varphi=R t_{1} \ldots t_{k}$, then $\varphi^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)=1$ if and only if $\left(t_{1}^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{k}^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)\right) \in R^{\mathcal{M}}$. But, by definition of a substructure, $R^{\mathcal{N}}=R^{\mathcal{M}} \cap N^{k}$ and hence, that last statement is equivalent to $\left(t_{1}^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{k}^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)\right) \in R^{\mathcal{N}}$, which is, by definition, equivalent to $\varphi^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)=1$. If $\varphi=\neg \psi$, then $\varphi^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)=f_{\neg}\left(\psi^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)\right)=$ $f_{\neg}\left(\psi^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)\right)=\varphi^{\mathcal{N}}\left(a_{1}, \ldots, a_{n}\right)$, and similarly for binary operators.
Let us now assume that $\varphi=\forall x_{1} \forall x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$. To prove that $\mathcal{N} \vDash \varphi$, se have to show that for all tuple $\left(a_{1}, \ldots, a_{n}\right) \in N, \mathcal{N} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$, i.e. $\mathcal{M} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$. But because $\mathcal{M} \vDash \forall x_{1} \forall x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$, we do have $\mathcal{M} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$.
2. To show that $\mathcal{M} \vDash \exists x_{1}, \ldots, \exists x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$, we have to find a tuple $\left(a_{1}, \ldots, a_{n}\right) \in M$ such that $\mathcal{M} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$. But, by hypothesis, there exists $\left(a_{1}, \ldots, a_{n}\right) \in N \subseteq M$ such that $\mathcal{N} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$ and hence, because ψ is quantifier free, $\mathcal{M} \vDash \psi\left(a_{1}, \ldots, a_{n}\right)$.
3. Let c be a constant symbol. Because $\mathcal{M}_{i} \leqslant \mathcal{L} \mathcal{M}_{j}$ whenever $i \leqslant j$, it follows that $c^{\mathcal{M}_{i}}$ does not depend on i. Let $c^{\mathcal{M}}=c^{\mathcal{M}_{i}}$ for any/all i. Similalry, if f is an n-ary function symbol and $a_{1}, \ldots, a_{n} \in M_{i}$ then for all $j \geqslant i, f^{\mathcal{M}_{j}}\left(a_{1}, \ldots, a_{n}\right)$ does not depend on j and let $f^{\mathcal{M}}\left(a_{1}, \ldots, a_{n}\right)=f^{\mathcal{M}_{i}}\left(a_{1}, \ldots, a_{n}\right)$ for any $/$ all i such that $\left(a_{1}, \ldots, a_{n}\right) \in M_{i}$. Finally, let $R^{\mathcal{M}}=\cup_{i} R^{\mathcal{M}_{i}}$. Note that if $\left(a_{1}, \ldots, a_{n}\right) \in M_{i}$ and $j \geqslant i$, then $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{M}_{j}}$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{M}_{i}}$. It immediately follows that $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{M}}$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{M}_{i}}$ for all/any i such that $\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathcal{M}_{i}}$.
It follows from the definition of the structure \mathcal{M} that, for all $i, \mathcal{M}_{i} \leqslant_{\mathcal{L}} \mathcal{M}$.
4. Let $\left(a_{1}, \ldots, a_{n}\right) \in M$, then there is some i_{0} such that $\left(a_{1}, \ldots, a_{n}\right) \in M_{i_{0}}$. Because $M_{i_{0}} \vDash \forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \psi$, there exists $\left(b_{1}, \ldots b_{m}\right) \in M_{i_{0}} \subseteq M$ such that $M_{i_{0}} \vDash \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$, i.e. $M \vDash \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right)$ and hence, $M \vDash \forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \psi$.

Problem 2 :

1. The formula $\forall y x \cdot y=x$ is a formula that defines the set $\{0\}$.
2. The formula $\forall y x \cdot y=y$ is a formula that defines the set $\{1\}$.
3. The forumla $\forall y \forall z(x=y \cdot z \rightarrow(y=x \vee z=x)) \wedge x \cdot x \neq x$ is a formula whose realisations are the prime numbers.
4. Because of the previous question, and the fact that any automorphism must preserve all definable sets, an automorphism σ of \mathcal{M} must send 0 to 0,1 to 1 and prime numbers to prime numbers (although σ may not fix each prime number). Let us prove that this are the only conditions. Let τ be a permutation of the set of prime numbers (i.e. a bijection between the set of prime numbers onto itself). We define σ_{τ} as follows: if $x=\prod_{i} p_{i}^{n_{i}}$, then $\sigma_{\tau}(x)=\prod_{i} \tau\left(p_{i}\right)^{n_{i}}$. Now, let $x=\prod_{i} p_{i}^{n_{i}}$ and $y=\prod_{j} p_{j}^{m_{j}}$. Setting some of the exponant to 0 , we may assume that the same prime appear in the decomposition of x and y. Then $x y=\prod_{i} p_{i}^{n_{i}+m_{i}}$ and $\sigma_{\tau}(x y)=\prod_{i} \tau\left(p_{i}\right)^{n_{i}+m_{i}}=\left(\prod_{i} \tau\left(p_{i}\right)^{n_{i}}\right)\left(\Pi_{i} \tau\left(p_{i}\right)^{m_{i}}\right)=\sigma_{\tau}(x) \sigma_{\tau}(y)$.
Moreover, because τ is injetive, by uniqueness of prime decompisition, σ_{τ} is also injective. And because τ is surjective, so is σ_{τ}.

Finally, if σ is an automorphism of \mathcal{M}, then by the discussion at the start of the question, σ induces a permutation τ_{σ} of the set of primes and because σ preserves multiplication, $\sigma=\sigma_{\tau_{\sigma}}$ and hence every automorphism of \mathcal{M} is of the form σ_{τ} for some permutation τ of the set of primes.
5. Let n be any nonnegative integer which is not 0 or 1 and let p be a prime that appears in the prime decomposition of n. Consider τ to be a permutation of the set of primes sending p to some prime q which does not appear in the decomposition on n. Then $\sigma_{\tau}(n) \neq n$ and hence any formula satisfied by n is also satisfied by $\sigma_{\tau}(n)$ and hence no formula is satisfied by n and only n.
6. Let τ be a permutation of the primes sending 2 to 3 . Then $\sigma_{\tau}(2)=3$ and $\sigma_{\tau}(4)=9 \neq 3+3$. It follows that no formula $\varphi(x, y, z)$ can only be realised by tuples such that $z=x+y$.

Problem 3:

1. Let $\varphi\left(x_{1}, \ldots, x_{k}\right)$ be a formula and f_{φ} be the function $\left(a_{1}, \ldots, a_{k}\right) \mapsto 1$ if $M \vDash \varphi\left(a_{1}, \ldots, a_{k}\right)$ and 0 otherwise. Then $\varphi\left(x_{1}, \ldots, x_{k}\right)$ and $\psi\left(x_{1}, \ldots, x_{k}\right)$ are equivalent, in \mathcal{M}, if and only if $f_{\varphi}=f_{\psi}$. But there are at most $b=2^{|M|^{k}}$ such functions and hence, we can find up to b formulas with k free variables such that every possible f_{φ} (and hence every equivalence class in \mathcal{M}) is represented.
2. Let φ_{n} be the sentence $\exists x_{1} \ldots \exists x_{n} \wedge_{i \neq j} x_{i} \neq x_{j}$. Then $\mathcal{M} \vDash \varphi_{n}$ if and only if $|M| \geqslant n$. Thus $\mathcal{M} \vDash \varphi_{j \wedge \neg \varphi_{j+1}}$ and so does \mathcal{N} by elementary equivalence.
3. Let φ be the sentence $\exists x_{1} \ldots \exists x_{j} \wedge_{i \neq j} x_{i} \neq x_{j} \wedge \wedge_{i} \varphi_{i}^{\epsilon_{i}}\left(x_{1} \ldots, x_{j}\right)$ where $\epsilon_{i}=1$ if $\mathcal{M} \vDash \varphi_{i}\left(m_{1}, \ldots, m_{j}\right)$ and 0 otherwise, and as usual $\varphi^{1}=\varphi 0$ and $\varphi^{0}=\neg \varphi$. Because $\mathcal{M} \equiv \mathcal{N}$ and $\mathcal{M} \vDash \varphi$, we also have $\mathcal{N} \vDash \varphi$. Let n_{1}, \ldots, n_{j} be the elements whose existence is implied by φ. Then, they are distinct and there are j of them, so $N=\left\{n_{1}, \ldots, n_{j}\right\}$. Moreover $\mathcal{M} \vDash \varphi_{i}\left(m_{1}, \ldots, m_{j}\right)$ if and only if $\epsilon_{i}=1$ if and only if $\mathcal{N} \vDash \varphi_{i}\left(n_{1}, \ldots, n_{j}\right)$.
4. Let $\sigma\left(m_{i}\right)=n_{i}$ with the notations as above. Let $\varphi\left(x_{1}, \ldots, x_{k}\right)$ be some formula and $a_{1}, \ldots, a_{k} \in M$, we want to show that $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{k}\right)$ if and only if $\mathcal{N} \vDash \varphi\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{k}\right)\right)$. First of all, renaming the a_{i} that appear twice and adding unused variables for those that do not appear, we may assume that the tuple a_{1}, \ldots, a_{k} is in fact the tuple m_{1}, \ldots, m_{j}. By the first question, there also exists i such that $\mathcal{M} \vDash \forall x_{1} \ldots \forall x_{j}\left(\varphi\left(x_{1} \ldots, x_{j}\right) \leftrightarrow \varphi_{i}\left(x_{1} \ldots, x_{j}\right)\right)$. But this also holds in \mathcal{N} and hence $\mathcal{M} \vDash$ $\varphi\left(m_{1}, \ldots, m_{j}\right)$ if and only if $\mathcal{M} \vDash \varphi_{i}\left(m_{1}, \ldots, m_{j}\right)$ if and only if $\mathcal{N} \vDash \varphi_{i}\left(\sigma\left(m_{1}\right), \ldots, \sigma\left(m_{j}\right)\right)$ if and only if $\mathcal{N} \vDash \varphi\left(\sigma\left(m_{1}\right), \ldots, \sigma\left(m_{j}\right)\right)$.
It is now easy to check that σ is an automorphism. Indeed, $\mathcal{M} \vDash a=c$ if and only if $\mathcal{N} \vDash \sigma(a)=c$, $\mathcal{M} \vDash f\left(a_{1}, \ldots, a_{k}\right)=a$ if and only if $\mathcal{N} \vDash f\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{k}\right)\right)=\sigma(a)$ and $\mathcal{M} \vDash R\left(a_{1}, \ldots, a_{k}\right)$ if and only if $\mathcal{N} \vDash R\left(\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{k}\right)\right)$.
