Solutions to Homework 5

Due October 8th

Problem 1:

1. Let us first prove that for any quantifier free formula $\varphi(x_1, \ldots, x_n)$ and $a_1 \ldots, a_n \in N$, we have $\mathcal{N} \models \varphi(a_1, \ldots, a_n)$ if and only if $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$. In fact, we first have to show that for any term $t(x_1, \ldots, x_n)$, $t^{\mathcal{N}}(a_1, \ldots, a_n) = t^{\mathcal{M}}(a_1, \ldots, a_n)$, but that is an easy proof by induction: If $t = x_i$, then $t^{\mathcal{M}}(a_1, \ldots, a_n) = a_i = t^{\mathcal{N}}(a_1, \ldots, a_n)$, if $t = c, t^{\mathcal{M}}(a_1, \ldots, a_n) = c^{\mathcal{M}} = c^{\mathcal{M}} = t^{\mathcal{M}}(a_1, \ldots, a_n)$ and if $t = ft_1 \ldots t_k$, then $t^{\mathcal{M}}(a_1, \ldots, a_n) = f^{\mathcal{M}}(t_1^{\mathcal{M}}(a_1, \ldots, a_n), \ldots, t_k^{\mathcal{M}}(a_1, \ldots, a_n)) = f^{\mathcal{N}}(t_1^{\mathcal{N}}(a_1, \ldots, a_n), \ldots, t_k^{\mathcal{N}}(a_1, \ldots, a_n)) = t^{\mathcal{N}}(a_1, \ldots, a_n)$.

The result for φ is also proved by induction on φ . If $\varphi = Rt_1 \dots t_k$, then $\varphi^{\mathcal{M}}(a_1, \dots, a_n) = 1$ if and only if $(t_1^{\mathcal{M}}(a_1, \dots, a_n), \dots, t_k^{\mathcal{M}}(a_1, \dots, a_n)) \in R^{\mathcal{M}}$. But, by definition of a substructure, $R^{\mathcal{N}} = R^{\mathcal{M}} \cap N^k$ and hence, that last statement is equivalent to $(t_1^{\mathcal{N}}(a_1, \dots, a_n), \dots, t_k^{\mathcal{N}}(a_1, \dots, a_n)) \in R^{\mathcal{N}}$, which is, by definition, equivalent to $\varphi^{\mathcal{N}}(a_1, \dots, a_n) = 1$. If $\varphi = \neg \psi$, then $\varphi^{\mathcal{M}}(a_1, \dots, a_n) = f_{\neg}(\psi^{\mathcal{M}}(a_1, \dots, a_n)) = f_{\neg}(\psi^{\mathcal{M}}(a_1, \dots, a_n)) = \varphi^{\mathcal{N}}(a_1, \dots, a_n)$, and similarly for binary operators.

Let us now assume that $\varphi = \forall x_1 \forall x_n \psi(x_1, \dots, x_n)$. To prove that $\mathcal{N} \models \varphi$, so have to show that for all tuple $(a_1, \dots, a_n) \in \mathcal{N}$, $\mathcal{N} \models \psi(a_1, \dots, a_n)$, i.e. $\mathcal{M} \models \psi(a_1, \dots, a_n)$. But because $\mathcal{M} \models \forall x_1 \forall x_n \psi(x_1, \dots, x_n)$, we do have $\mathcal{M} \models \psi(a_1, \dots, a_n)$.

- 2. To show that $\mathcal{M} \models \exists x_1, \ldots, \exists x_n \psi(x_1, \ldots, x_n)$, we have to find a tuple $(a_1, \ldots, a_n) \in \mathcal{M}$ such that $\mathcal{M} \models \psi(a_1, \ldots, a_n)$. But, by hypothesis, there exists $(a_1, \ldots, a_n) \in \mathcal{N} \subseteq \mathcal{M}$ such that $\mathcal{N} \models \psi(a_1, \ldots, a_n)$ and hence, because ψ is quantifier free, $\mathcal{M} \models \psi(a_1, \ldots, a_n)$.
- 3. Let c be a constant symbol. Because $\mathcal{M}_i \leq_{\mathcal{L}} \mathcal{M}_j$ whenever $i \leq j$, it follows that $c^{\mathcal{M}_i}$ does not depend on i. Let $c^{\mathcal{M}} = c^{\mathcal{M}_i}$ for any/all i. Similalry, if f is an n-ary function symbol and $a_1, \ldots, a_n \in \mathcal{M}_i$ then for all $j \geq i$, $f^{\mathcal{M}_j}(a_1, \ldots, a_n)$ does not depend on j and let $f^{\mathcal{M}}(a_1, \ldots, a_n) = f^{\mathcal{M}_i}(a_1, \ldots, a_n)$ for any/all i such that $(a_1, \ldots, a_n) \in \mathcal{M}_i$. Finally, let $R^{\mathcal{M}} = \bigcup_i R^{\mathcal{M}_i}$. Note that if $(a_1, \ldots, a_n) \in \mathcal{M}_i$ and $j \geq i$, then $(a_1, \ldots, a_n) \in R^{\mathcal{M}_j}$ if and only if $(a_1, \ldots, a_n) \in R^{\mathcal{M}_i}$. It immediately follows that $(a_1, \ldots, a_n) \in R^{\mathcal{M}}$ if and only if $(a_1, \ldots, a_n) \in R^{\mathcal{M}_i}$ for all/any i such that $(a_1, \ldots, a_n) \in R^{\mathcal{M}_i}$.

It follows from the definition of the structure \mathcal{M} that, for all $i, \mathcal{M}_i \leq_{\mathcal{L}} \mathcal{M}$.

4. Let $(a_1, \ldots, a_n) \in M$, then there is some i_0 such that $(a_1, \ldots, a_n) \in M_{i_0}$. Because $M_{i_0} \models \forall x_1 \ldots \forall x_n \exists y_1 \ldots \exists y_m \psi$, there exists $(b_1, \ldots, b_m) \in M_{i_0} \subseteq M$ such that $M_{i_0} \models \varphi(a_1, \ldots, a_n, b_1, \ldots, b_m)$, i.e. $M \models \varphi(a_1, \ldots, a_n, b_1, \ldots, b_m)$ and hence, $M \models \forall x_1 \ldots \forall x_n \exists y_1 \ldots \exists y_m \psi$.

Problem 2:

- 1. The formula $\forall y x \cdot y = x$ is a formula that defines the set $\{0\}$.
- 2. The formula $\forall y x \cdot y = y$ is a formula that defines the set $\{1\}$.
- 3. The forumla $\forall y \forall z (x = y \cdot z \rightarrow (y = x \lor z = x)) \land x \cdot x \neq x$ is a formula whose realisations are the prime numbers.
- 4. Because of the previous question, and the fact that any automorphism must preserve all definable sets, an automorphism σ of \mathcal{M} must send 0 to 0, 1 to 1 and prime numbers to prime numbers (although σ may not fix each prime number). Let us prove that this are the only conditions. Let τ be a permutation of the set of prime numbers (i.e. a bijection between the set of prime numbers onto itself). We define σ_{τ} as follows: if $x = \prod_i p_i^{n_i}$, then $\sigma_{\tau}(x) = \prod_i \tau(p_i)^{n_i}$. Now, let $x = \prod_i p_i^{n_i}$ and $y = \prod_j p_j^{m_j}$. Setting some of the exponant to 0, we may assume that the same prime appear in the decomposition of x and y. Then $xy = \prod_i p_i^{n_i+m_i}$ and $\sigma_{\tau}(xy) = \prod_i \tau(p_i)^{n_i+m_i} = (\prod_i \tau(p_i)^{n_i})(\prod_i \tau(p_i)^{m_i}) = \sigma_{\tau}(x)\sigma_{\tau}(y)$.

Moreover, because τ is injetive, by uniqueness of prime decomposition, σ_{τ} is also injective. And because τ is surjective, so is σ_{τ} .

Finally, if σ is an automorphism of \mathcal{M} , then by the discussion at the start of the question, σ induces a permutation τ_{σ} of the set of primes and because σ preserves multiplication, $\sigma = \sigma_{\tau_{\sigma}}$ and hence every automorphism of \mathcal{M} is of the form σ_{τ} for some permutation τ of the set of primes.

- 5. Let n be any nonnegative integer which is not 0 or 1 and let p be a prime that appears in the prime decomposition of n. Consider τ to be a permutation of the set of primes sending p to some prime q which does not appear in the decomposition on n. Then $\sigma_{\tau}(n) \neq n$ and hence any formula satisfied by n is also satisfied by $\sigma_{\tau}(n)$ and hence no formula is satisfied by n and only n.
- 6. Let τ be a permutation of the primes sending 2 to 3. Then $\sigma_{\tau}(2) = 3$ and $\sigma_{\tau}(4) = 9 \neq 3 + 3$. It follows that no formula $\varphi(x, y, z)$ can only be realised by tuples such that z = x + y.

Problem 3:

- 1. Let $\varphi(x_1, \ldots, x_k)$ be a formula and f_{φ} be the function $(a_1, \ldots, a_k) \mapsto 1$ if $M \models \varphi(a_1, \ldots, a_k)$ and 0 otherwise. Then $\varphi(x_1, \ldots, x_k)$ and $\psi(x_1, \ldots, x_k)$ are equivalent, in \mathcal{M} , if and only if $f_{\varphi} = f_{\psi}$. But there are at most $b = 2^{|\mathcal{M}|^k}$ such functions and hence, we can find up to b formulas with k free variables such that every possible f_{φ} (and hence every equivalence class in \mathcal{M}) is represented.
- 2. Let φ_n be the sentence $\exists x_1 \dots \exists x_n \wedge_{i \neq j} x_i \neq x_j$. Then $\mathcal{M} \models \varphi_n$ if and only if $|\mathcal{M}| \ge n$. Thus $\mathcal{M} \models \varphi_j \wedge \neg \varphi_{j+1}$ and so does \mathcal{N} by elementary equivalence.
- 3. Let φ be the sentence $\exists x_1 \dots \exists x_j \wedge_{i \neq j} x_i \neq x_j \wedge \wedge_i \varphi_i^{\epsilon_i}(x_1 \dots, x_j)$ where $\epsilon_i = 1$ if $\mathcal{M} \models \varphi_i(m_1, \dots, m_j)$ and 0 otherwise, and as usual $\varphi^1 = \varphi 0$ and $\varphi^0 = \neg \varphi$. Because $\mathcal{M} \equiv \mathcal{N}$ and $\mathcal{M} \models \varphi$, we also have $\mathcal{N} \models \varphi$. Let n_1, \dots, n_j be the elements whose existence is implied by φ . Then, they are distinct and there are j of them, so $N = \{n_1, \dots, n_j\}$. Moreover $\mathcal{M} \models \varphi_i(m_1, \dots, m_j)$ if and only if $\epsilon_i = 1$ if and only if $\mathcal{N} \models \varphi_i(n_1, \dots, n_j)$.
- 4. Let $\sigma(m_i) = n_i$ with the notations as above. Let $\varphi(x_1, \ldots, x_k)$ be some formula and $a_1, \ldots, a_k \in M$, we want to show that $\mathcal{M} \models \varphi(a_1, \ldots, a_k)$ if and only if $\mathcal{N} \models \varphi(\sigma(a_1), \ldots, \sigma(a_k))$. First of all, renaming the a_i that appear twice and adding unused variables for those that do not appear, we may assume that the tuple a_1, \ldots, a_k is in fact the tuple m_1, \ldots, m_j . By the first question, there also exists isuch that $\mathcal{M} \models \forall x_1 \ldots \forall x_j (\varphi(x_1 \ldots, x_j) \leftrightarrow \varphi_i(x_1 \ldots, x_j))$. But this also holds in \mathcal{N} and hence $\mathcal{M} \models \varphi(m_1, \ldots, m_j)$ if and only if $\mathcal{M} \models \varphi_i(m_1, \ldots, m_j)$ if and only if $\mathcal{M} \models \varphi_i(\sigma(m_1), \ldots, \sigma(m_j))$ if and only if $\mathcal{N} \models \varphi(\sigma(m_1), \ldots, \sigma(m_j))$.

It is now easy to check that σ is an automorphism. Indeed, $\mathcal{M} \models a = c$ if and only if $\mathcal{N} \models \sigma(a) = c$, $\mathcal{M} \models f(a_1, \ldots, a_k) = a$ if and only if $\mathcal{N} \models f(\sigma(a_1), \ldots, \sigma(a_k)) = \sigma(a)$ and $\mathcal{M} \models R(a_1, \ldots, a_k)$ if and only if $\mathcal{N} \models R(\sigma(a_1), \ldots, \sigma(a_k))$.