Homework 5

Due October 8th

Problem 1 :

- I. A sentence φ is said to be universal if it is of the form $\forall x_1 \dots \forall x_n \psi(x_1, \dots, x_n)$ where no quantifier appear in ψ . Let φ be universal, \mathcal{M} an \mathcal{L} -structure, and \mathcal{N} a substructure of \mathcal{M} . Show that if $\mathcal{M} \models \varphi$ then $\mathcal{N} \models \varphi$.
- 2. A sentence φ is said to be existential if it is of the form $\exists x_1 \dots \exists x_n \psi(x_1, \dots, x_n)$ where no quantifier appear in ψ . Let φ be existential, \mathcal{M} an \mathcal{L} -structure, and \mathcal{N} a substructure of \mathcal{M} . Show that if $\mathcal{N} \models \varphi$ then $\mathcal{M} \models \varphi$.
- 3. Let for all $i \in \mathbb{N}$, let \mathcal{M}_i be an \mathcal{L} -structure such that for all i < j, $\mathcal{M}_i \leq_{\mathcal{L}} \mathcal{M}_j$. Show that $M = \bigcup_i M_i$ can be made into an \mathcal{L} -structure \mathcal{M} such that for all i, $\mathcal{M}_i \leq_{\mathcal{L}} \mathcal{M}$.
- 4. Let $\varphi = \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m \psi(x_1, \dots, x_n, y_1, \dots, y_m)$, where ψ is quantifier free, be a sentence. Show that if for all $i, \mathcal{M}_i \models \varphi$, then $\mathcal{M} \models \varphi$.

Problem 2 :

Let $\mathcal{L} = \{\cdot\}$ (and the equality, but I don't mention it anymore) and let \mathcal{M} be the \mathcal{L} -structure whose underlying set is \mathbb{N} (the non negative integers) and where \cdot is interpreted as the multiplication.

- I. Show that there is a formula $\varphi_0(x)$ such that $\mathcal{M} \models \varphi_0(a)$ if and only if a = 0.
- 2. Show that there is a formula $\varphi_1(x)$ such that $\mathcal{M} \models \varphi_1(a)$ if and only if a = 1.
- 3. Show that there is a formula $\varphi_{\text{prime}}(x)$ such that $\mathcal{M} \models \varphi_{\text{prime}}(a)$ if and only if *a* is prime.
- 4. Find all automorphisms of \mathcal{M} .
- 5. Show that the only two elements of M such that there exist a formula φ_n such that $\mathcal{M} \models \varphi_n(a)$ if and only if a = n are 0 and 1.
- 6. Show that there is no formula $\psi(x, y, z)$ such that $\mathcal{M} \vDash \psi(a, b, c)$ if and only if c = a + b.

Problem 3:

Let \mathcal{M} be a finite \mathcal{L} -structure.

- I. Let k be a positive integer. Show that there exist $l \in \mathbb{N}$ and formulas $\varphi_i(x_1, \ldots, x_k)$ for $i = 1, \ldots, l$ such that any formula $\varphi(x_1, \ldots, x_k)$ is equivalent, in \mathcal{M} , to one of the $\varphi_i(x_1, \ldots, x_k)$.
- 2. Let $M = \{m_1, \ldots, m_j\}$ and $\mathcal{N} \equiv \mathcal{M}$. Show that |N| = j (remember that you have = in the language).
- 3. Show also that you can find n_1, \ldots, n_j such that $N = \{n_1, \ldots, n_j\}$ and for all formulas φ_i of question I (for k = j) we have $\mathcal{M} \models \varphi_i(m_1, \ldots, m_j)$ if and only if $\mathcal{N} \models \varphi_i(n_1, \ldots, n_j)$.
- 4. Show that \mathcal{M} and \mathcal{N} are isomorphic.