Homework 5
 Due October 8th

Problem I :

I. A sentence φ is said to be universal if it is of the form $\forall x_{1} \ldots \forall x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$ where no quantifier appear in ψ. Let φ be universal, \mathcal{M} an \mathcal{L}-structure, and \mathcal{N} a substructure of \mathcal{M}. Show that if $\mathcal{M} \vDash \varphi$ then $\mathcal{N} \vDash \varphi$.
2. A sentence φ is said to be existential if it is of the form $\exists x_{1} \ldots \exists x_{n} \psi\left(x_{1}, \ldots, x_{n}\right)$ where no quantifier appear in ψ. Let φ be existential, \mathcal{M} an \mathcal{L}-structure, and \mathcal{N} a substructure of \mathcal{M}. Show that if $\mathcal{N} \vDash \varphi$ then $\mathcal{M} \vDash \varphi$.
3. Let for all $i \in \mathbb{N}$, let \mathcal{M}_{i} be an \mathcal{L}-structure such that for all $i<j, \mathcal{M}_{i} \leqslant \mathcal{L} \mathcal{M}_{j}$. Show that $M=\cup_{i} M_{i}$ can be made into an \mathcal{L}-structure \mathcal{M} such that for all $i, \mathcal{M}_{i} \leqslant_{\mathcal{L}} \mathcal{M}$.
4. Let $\varphi=\forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$, where ψ is quantifier free, be a sentence. Show that if for all $i, \mathcal{M}_{i} \vDash \varphi$, then $\mathcal{M} \vDash \varphi$.

Problem 2:

Let $\mathcal{L}=\{\cdot\}$ (and the equality, but I don't mention it anymore) and let \mathcal{M} be the \mathcal{L}-structure whose underlying set is \mathbb{N} (the non negative integers) and where \cdot is interpreted as the multiplication.
I. Show that there is a formula $\varphi_{0}(x)$ such that $\mathcal{M} \vDash \varphi_{0}(a)$ if and only if $a=0$.
2. Show that there is a formula $\varphi_{1}(x)$ such that $\mathcal{M} \vDash \varphi_{1}(a)$ if and only if $a=1$.
3. Show that there is a formula $\varphi_{\text {prime }}(x)$ such that $\mathcal{M} \vDash \varphi_{\text {prime }}(a)$ if and only if a is prime.
4. Find all automorphisms of \mathcal{M}.
5. Show that the only two elements of M such that there exist a formula φ_{n} such that $\mathcal{M} \vDash \varphi_{n}(a)$ if and only if $a=n$ are 0 and 1 .
6. Show that there is no formula $\psi(x, y, z)$ such that $\mathcal{M} \vDash \psi(a, b, c)$ if and only if $c=a+b$.

Problem 3:

Let \mathcal{M} be a finite \mathcal{L}-structure.
I. Let k be a positive integer. Show that there exist $l \in \mathbb{N}$ and formulas $\varphi_{i}\left(x_{1}, \ldots, x_{k}\right)$ for $i=1, \ldots, l$ such that any formula $\varphi\left(x_{1}, \ldots, x_{k}\right)$ is equivalent, in \mathcal{M}, to one of the $\varphi_{i}\left(x_{1}, \ldots, x_{k}\right)$.
2. Let $M=\left\{m_{1}, \ldots, m_{j}\right\}$ and $\mathcal{N} \equiv \mathcal{M}$. Show that $|N|=j$ (remember that you have $=$ in the language).
3. Show also that you can find n_{1}, \ldots, n_{j} such that $N=\left\{n_{1}, \ldots, n_{j}\right\}$ and for all formulas φ_{i} of question I (for $k=j$) we have $\mathcal{M} \vDash \varphi_{i}\left(m_{1}, \ldots, m_{j}\right)$ if and only if $\mathcal{N} \vDash \varphi_{i}\left(n_{1}, \ldots, n_{j}\right)$.
4. Show that \mathcal{M} and \mathcal{N} are isomorphic.

