Silvain Rideau 1091 Evans

Solutions to Homework 6()

Due October 29th

Problem 1:

I. By the (\forall_3) axiom, $\vdash \forall x \neg \varphi \rightarrow \neg \varphi$ holds. Moreover $(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$ is a tautology, so, replacing A by $\forall x \neg \varphi$ and B by φ , applying the tautology rule and the Modus Ponens rule, we obtain that $\vdash \varphi \rightarrow \neg \forall \neg \varphi$ holds.

But $\vdash \exists x \varphi \leftrightarrow \neg \forall x \neg \varphi$ holds by the (Def_∃) rule, and by the tautology $(A \leftrightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (B \rightarrow A))$ applied to $A = \exists x \varphi, B = \varphi$ and $C = \neg \forall x \neg \varphi$, and two applications of Modus Ponens, we get that $\vdash \varphi \rightarrow \exists x \varphi$ holds.

I am sorry I am not writing the deductions trees anymore, but they are too large (in particular because the tautology rule)...

2. Instead of providing a derivation, let us use completness. We have to show that \models $(\forall x(\varphi \rightarrow \psi)) \rightarrow ((\exists x\varphi) \rightarrow \psi)$. Let \mathcal{M} be some \mathcal{L} -structure and $\delta \in M^V$. We want to show that $(\forall x(\varphi \rightarrow \psi)) \rightarrow ((\exists x\varphi) \rightarrow \psi)_{\delta}^{\mathcal{M}} = 1$. Let us assume that $(\forall x(\varphi \rightarrow \psi))_{\delta}^{\mathcal{M}} = 1$ and $(\exists x\varphi)_{\delta}^{\mathcal{M}} = 1$, we have to show that $\psi_{\delta}^{\mathcal{M}} = 1$. By the semantic of \exists , we can find δ' such that $\delta'(y) = \delta(y)$ whenever $y \neq x$ such that $\varphi_{\delta'}^{\mathcal{M}} = 1$. Moreover, by the semantic of \forall , we have $(\varphi \rightarrow \psi)_{\delta'}^{\mathcal{M}} = 1$ and hence $\psi_{\delta'}^{\mathcal{M}} = 1$. But x is not free in ψ and hence $\psi_{\delta}^{\mathcal{M}} = \psi_{\delta'}^{\mathcal{M}} = 1$.

We can also provide a derivation, but some very tedious book keeping is involved. Let me sketch such a proof (in particular, I will not detail all the tautologies involed, especially when then concern transitivity of \rightarrow , or contraposition). First let us prove that $\vdash (\forall x (\varphi \rightarrow \psi)) \rightarrow (\forall x (\neg \psi \rightarrow \varphi))$ holds. By (Taut), $\vdash (\varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi)$ holds. By (\forall_3) , $\vdash (\forall x \varphi \rightarrow \psi) \rightarrow \varphi \rightarrow \psi$ holds and hence by tautology and Modus Ponens, $\vdash (\forall x (\varphi \rightarrow \psi)) \rightarrow (\neg \psi \rightarrow \neg \varphi)$ holds. By (Gen), $\vdash \forall x ((\forall x (\varphi \rightarrow \psi)) \rightarrow (\neg \psi \rightarrow \neg \varphi))$ holds and by (\forall_1) and Modus Ponens, $\vdash (\forall x (\varphi \rightarrow \psi)) \rightarrow (\forall x \neg \psi \rightarrow \neg \varphi))$ holds.

By (\forall_1) , $\vdash (\forall x \neg \psi \rightarrow \neg \varphi) \rightarrow (\neg \psi \rightarrow (\forall x \neg \varphi))$ holds and by tautology and Modus Ponens (and the paragraph above), $\vdash (\forall x (\varphi \rightarrow \psi)) \rightarrow (\neg \psi \rightarrow (\forall x \neg \varphi))$ holds. By tautology and Modus Ponens $\vdash (\forall x (\varphi \rightarrow \psi)) \rightarrow ((\neg \forall x \neg \varphi) \rightarrow \psi)$ holds. Finally, using (Def_{\exists}) , (Taut) and Modus Ponens, one gets that $\vdash (\forall x (\varphi \rightarrow \psi)) \rightarrow ((\exists x \varphi) \rightarrow \psi)$ holds.

We have to show that ⊢' (∃x φ) → (¬∀x ¬φ) and ⊢' (¬∀x ¬φ) → (∃x φ) both hold (and then we can conclude y some straightforward use of tautologies dans Modus Ponens). Let us first prove that ⊢' (∃x φ) → (¬∀x ¬φ) holds. By (∀₃), ⊢' ∀x ¬φ → ¬φ holds. By tautologies (contraposition) and Modus ponens, ⊢' φ → ¬∀x ¬φ holds. By (Gen), ⊢' ∀x (φ → ¬∀x ¬φ) holds, and by ∃₂ and Modus Ponens, ⊢' (∃x φ) → (¬∀x ¬φ) holds.

Now let us prove that $\vdash' (\neg \forall x \neg \varphi) \rightarrow (\exists x \varphi)$ holds. By $\exists_1, \vdash' \varphi \rightarrow \exists x \varphi$ holds. By tautology and Modus Ponens, $\vdash' (\neg \exists x \varphi) \rightarrow \neg \varphi$ holds. By (Gen), $\vdash' \forall x, (\neg \exists x \varphi) \rightarrow \neg \varphi$ holds and by \forall_1 and Modus Ponens, $\vdash' (\neg \exists x \varphi) \rightarrow (\forall x \neg \varphi)$ holds. Finally, by tautology and Modus Ponens, $\vdash' (\neg \forall x \neg \varphi) \rightarrow (\exists x \varphi)$ also holds.

4. In question I, we have proved that the two new rules (∃1) and (∃2) can be derived using the usual rules. It follows that the set T of (Γ, φ) suc that Γ ⊢ φ is closed under these two new rules (and is, by definition closed under the old rules), so, by minimality T' ⊆ T. Using question 2, we get that T' is closed under the (Def∃) rule and hence, by minimality of T, we get that T ⊆ T', i.e. T = T' and Γ ⊢ φ if and only if Γ ⊢' φ.

Problem 2:

- I. Let $\varphi_n = \exists x_1 \dots \exists x_n \wedge_{i \neq j} \neg x_i = x_j$. Then $\mathcal{M} \models \varphi_n$ if and only if $|\mathcal{M}| \ge n$. Let $T_{\infty} = \{\varphi_n : n \in \mathbb{N}\}$ and $T' = T \cup T_{\infty}$. Then the models of T' are indeed exactly the infinite models of T'.
- 2. By the compactness theorem, it suffices to show that any finite subset of T' is consistent. But any finite subset of T' is included in $T \cup \{\varphi_n : n \leq m\}$ for some m. By hypothesis, there exists $\mathcal{M} \models T$ such that $|\mathcal{M}| \ge m$. Then $\mathcal{M} \models T \cup \{\varphi_n : n \leq m\}$ and that theory is indeed satisfiable.
- 3. By the compactness theorem $T' \vDash \varphi$ if and only if $T \cup \{\varphi_n : n \le m\} \vDash \varphi$ for some m. But models of $T \cup \{\varphi_n : n \le m\}$ are exactly the models of T of cardinality at least m. That concludes the proof.