Silvain Rideau 1091 Evans

Homework 6

Due October 29th

Problem 1:

We want to replace the rule (Def_{\exists}) (which says that $\Gamma \vdash (\exists x\varphi) \leftrightarrow (\neg \forall x \neg \varphi)$ always holds) by two new rules. The first one, (\exists_1) , states that $\Gamma \vdash \varphi \rightarrow \exists x\varphi$ always holds and the other one, (\exists_2) , states that $\Gamma \vdash (\forall x(\varphi \rightarrow \psi)) \rightarrow ((\exists x\varphi) \rightarrow \psi)$ holds whenever $x \notin \text{fvar}(\psi)$.

- 1. Let φ be a formula. Provide a derivation of $\vdash \varphi \rightarrow \exists \varphi$.
- 2. Let φ and ψ be formulas and x be a variable. Assume that $x \notin \text{fvar}(\psi)$. Prove that $\vdash (\forall x(\varphi \rightarrow \psi)) \rightarrow ((\exists x\varphi) \rightarrow \psi)$ holds.
- 3. Let T' be the smallest set of pairs (Γ, φ) closed under the rules (MP), (Gen), (Ax), (Taut), $(\forall_1), (\forall_2), (\forall_3), (\exists_1)$ and (\exists_2) (i.e. all of the usual except (Def_ \exists), plus the two new ones). We will write $\Gamma \vdash' \varphi$ if $(\Gamma, \varphi) \in T'$. Show that $\vdash' (\exists \varphi) \leftrightarrow (\neg \forall x \neg \varphi)$, i.e. show that the rule (Def_ \exists) can be derived from all the other rules.
- 4. Show that $\Gamma \vdash \varphi$ if and only if $\Gamma \vdash' \varphi$.

Problem 2:

Let C be a set of finite \mathcal{L} -structures such that for all $n \in \mathbb{N}$, there is some $\mathcal{M} \in C$ such that $|\mathcal{M}| \ge n$. Let $T = \{\varphi : \varphi \text{ is a sentence and for all } \mathcal{M} \in C, \mathcal{M} \models \varphi\}.$

- 1. Give a theory T' such that the models of T' are exactly the infinite models of T.
- 2. Show that T' has a model (i.e. there exists an infinite model of T).
- 3. Show that $T' \vDash \varphi$ if and only if there exists some $n \in \mathbb{N}$ such that for all $\mathcal{M} \in C$ of cardinality greater than $n, \mathcal{M} \vDash \varphi$.