Homework 6

Due October 29th

Problem 1:

We want to replace the rule $\left(\operatorname{Def}_{\exists}\right)$ (which says that $\Gamma \vdash(\exists x \varphi) \leftrightarrow(\neg \forall x \neg \varphi)$ always holds) by two new rules. The first one, $\left(\exists_{1}\right)$, states that $\Gamma \vdash \varphi \rightarrow \exists x \varphi$ always holds and the other one, $\left(\exists_{2}\right)$, states that $\Gamma \vdash(\forall x(\varphi \rightarrow \psi)) \rightarrow((\exists x \varphi) \rightarrow \psi)$ holds whenever $x \notin \operatorname{fvar}(\psi)$.

1. Let φ be a formula. Provide a deriation of $\vdash \varphi \rightarrow \exists \varphi$.
2. Let φ and ψ be formulas and x be a variable. Assume that $x \notin \operatorname{fvar}(\psi)$. Prove that $\vdash(\forall x(\varphi \rightarrow \psi)) \rightarrow((\exists x \varphi) \rightarrow \psi)$ holds.
3. Let T^{\prime} be the smallest set of pairs (Γ, φ) closed under the rules (MP), (Gen), (Ax), (Taut), $\left(\forall_{1}\right),\left(\forall_{2}\right),\left(\forall_{3}\right),\left(\exists_{1}\right)$ and $\left(\exists_{2}\right)$ (i.e. all of the usual except $\left(\operatorname{Def}_{\exists}\right)$, plus the two new ones). We will write $\Gamma \vdash^{\prime} \varphi$ if $(\Gamma, \varphi) \in T^{\prime}$. Show that $\vdash^{\prime}(\exists \varphi) \leftrightarrow(\neg \forall x \neg \varphi)$, i.e. show that the rule $\left(\operatorname{Def}_{\exists}\right)$ can be derived from all the other rules.
4. Show that $\Gamma \vdash \varphi$ if and only if $\Gamma \vdash^{\prime} \varphi$.

Problem 2:

Let C be a set of finite \mathcal{L}-structures such that for all $n \in \mathbb{N}$, there is some $\mathcal{M} \in C$ such that $|M| \geqslant n$. Let $T=\{\varphi: \varphi$ is a sentence and for all $M \in C, M \vDash \varphi\}$.

1. Give a theory T^{\prime} such that the models of T^{\prime} are exactly the infinite models of T.
2. Show that T^{\prime} has a model (i.e. there exists an infinite model of T).
3. Show that $T^{\prime} \vDash \varphi$ if and only if there exists some $n \in \mathbb{N}$ such that for all $\mathcal{M} \in C$ of cardinality greater than $n, \mathcal{M} \vDash \varphi$.
