Silvain Rideau 1091 Evans

Homework 7

Due November 5th

Problem 1:

1. Let us assume T is consistent otherwise T_{\forall} is not consistent either and this is not a very hard question.

We have to show that $\Delta(\mathcal{M}) \cup T$ is consistent. Let us assume it is not. Then, by compactness, there exists $T_0 \subseteq \Delta(\mathcal{M}) \cup T$ finite such that T_0 is inconsistent. Let $\varphi_i \in \Delta(\mathcal{M})$ for $0 < i \leq k$ be such that $T \cup \{\varphi_i : 0 < i \leq k\}$ is inconsistent. Let $\varphi = \bigwedge_i \varphi_i$, then $T \cup \{\varphi\}$ is inconsistent. By a lemma proved in class, this means that $T \models \neg \varphi$. But, because the only thing that were added in $\mathcal{L}(\mathcal{M})$ were the constants \underline{a} , for $a \in \mathcal{M}$, there exists an \mathcal{L} -formula $\psi(x_1, \ldots, x_n)$ such that $\varphi = \psi(\underline{a}_1, \ldots, \underline{a}_n)$ for some $a_i \in \mathcal{M}$. But now, by another lemma proved in class, because the \underline{a}_i do not appear in $T, T \models \forall x_1 \ldots \forall x_n \neg \psi$ which is a universal sentence, i.e. $\forall x_1 \ldots \forall x_n \neg \psi \in T_{\forall}$ and hence $\mathcal{M} \models \forall x_n \neg \psi$, in particular $\mathcal{M} \models \neg \psi(a_1, \ldots, a_n)$. But because $\varphi = \psi(\underline{a}_1, \ldots, \underline{a}_n) \in \Delta(\mathcal{M})$, we also have $\mathcal{M}^* \models \psi(\underline{a}_1, \ldots, \underline{a}_n)$, i.e. $\mathcal{M} \models \psi(a_1, \ldots, a_n)$, a contradiction.

2. Let us assume that $\mathcal{M} \models T_{\forall}$, then, by the previous question, there exists $\mathcal{N}^{\star} \models \Delta(\mathcal{M}) \cup T$. Let \mathcal{N} denote the reduct of \mathcal{N}^{\star} to \mathcal{L} . Then $\mathcal{N} \models T$ and, by a proposition proved in class, there exists an embedding $f : \mathcal{M} \to \mathcal{N}$.

Conversely, assume that there exists an embedding $f : \mathcal{M} \to \mathcal{N}$ and $\mathcal{N} \models T$. Pick $\varphi \in T_{\forall}$. Because $\mathcal{N} \models T$, and $T \models \varphi, \mathcal{N} \models \varphi$. Because φ is a universal sentence $f(\mathcal{M}) \models \varphi$ (we saw that in class and in Homework 5) and, because f is an isomorphism between \mathcal{M} and $f(\mathcal{M})$, we also have $\mathcal{M} \models \varphi$. We just have showed that $\mathcal{M} \models T_{\forall}$.

3. Let us assume that $T_{\forall} \subseteq T'_{\forall}$ and let $\mathcal{M} \models T'$. Then $\mathcal{M} \models T'_{\forall}$ and hence $M \models T_{\forall}$. It follows from question 2 that \mathcal{M} can be embedded in a model of T.

Conversely, assume that every model of T' can be embedded in a model of T. By question @, it follows that every model of T' is a model of T_{\forall} . It follows that for all $\varphi \in T_{\forall}, T' \vDash \varphi$ and $\varphi \in T'_{\forall}$.

4. Let us assume that T is stable under substructure. First of all, by definition we have $T \models T_{\forall}$, and thus we only have to show that every model of T_{\forall} is a model of T. Let $\mathcal{M} \models T_{\forall}$, then, by question 2, there exists an embedding $f : \mathcal{M} \to \mathcal{N} \models T$. But because T is stable under substructure, we also have $\mathcal{M} \models T$.

Conversely, assume that T is equivalent to T_{\forall} and let $f : \mathcal{M} \to \mathcal{N} \models T$ be an embedding. Then, by question 2, $\mathcal{M} \models T_{\forall}$ and, by equivalence, $\mathcal{M} \models T$.

Problem 2:

1. Let $X = \{x_1, \ldots, x_k\}$ such that $x_1 < x_2 < \cdots < x_k$. Let y be some point in Y. Let us first assume that $\{x \in Y : x \leq y\}$ is infinite. Then we can find $y_1 < y_2 < \cdots < y_k = y \in Y$ and the map $x_i \mapsto y_i$ is an embedding. If $\{x \in Y : x \leq y\}$ is finite, then $\{x \in Y : x \geq y\}$ is infinite and we can find $y = y_1 < y_2 < \cdots < y_k \in Y$. Then $x_i \mapsto y_i$ is also an embedding.

- 2. By the compactness theorem, the theory $\Delta(X) \cup T$ is consistent if and only if every finite $T_0 \subseteq \Delta(X) \cup T$ is consistent. Let $X_0 \subseteq X$ contain all the $a \in X$ such that <u>a</u> appears in T_0 . Because T_0 is finite X_0 is finite and $T_0 \subseteq \Delta(X_0) \cup T$. So it suffices to find a model of $T_0 \subseteq \Delta(X_0) \cup T$, i.e. prove that X_0 can be embedded in a model of T. Let $Y \models T$, then Y is an infinite total order and so, by the previous question X_0 can be embedded in Y.
- 3. Let T_{\leq} be the theory of total orders, i.e. $T_{\leq} = \{ \forall x \forall y \forall z \ (x \leq y \land y \leq z) \rightarrow x \leq z, \forall x x \leq x, \forall x \forall y \ (x \leq y \land y \leq x) \rightarrow x = y, \forall x \forall y x \leq y \lor y \leq x \}$. Then $T_{\leq} \subseteq T$ is a universal theory and hence $T_{\leq} \subseteq T_{\forall}$. On the other hand, by the previous question, every model of T_{\leq} can be embedded in a model of T and hence every model of T_{\leq} is a model of T_{\forall} , i.e. $T_{\leq} \models T_{\forall}$ and thus T_{\leq} and T_{\forall} are equivalent.