Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu
www.normalesup.org/~srideau/eng/teaching

Homework 7

Due November 5th

Problem 1:

Recall that a universal sentence is a sentence of the form $\forall x_1 \dots \forall x_n \varphi$ where φ si quantifier free. Let *T* be an \mathcal{L} -theory and let $T_{\forall} = \{\varphi : T \models \varphi \text{ and } \varphi \text{ is a universal sentence}\}.$

I. Let $\mathcal{M} \models T_{\forall}$. Show that the $\mathcal{L}(M)$ -theory $\Delta(\mathcal{M}) \cup T$ is consistent

Hint: Recall that if $T \models \varphi_{c_1/x_1,...,c_n/x_n}$ where the c_i are constants that do not appear in T, then $T \models \forall x_1 \dots \forall x_n \varphi$.

- 2. Show that $\mathcal{M} \models T_{\forall}$ if and only if there exists $\mathcal{N} \models T$ and an embedding $f : \mathcal{M} \rightarrow \mathcal{N}$.
- 3. Let T and T' be two theories, show that the following are equivalent:
 - a) $T_{\forall} \subseteq T'_{\forall};$
 - b) Every model of T' can be embedded in a model of T.
- 4. Show that *T* is stable under substructure (i.e. if $\mathcal{N} \models T$ and $f : \mathcal{M} \rightarrow \mathcal{N}$ is an embedding, then $\mathcal{M} \models T$) if and only if *T* is equivalent to T_{\forall} .

Problem 2:

Recall that an order (X, \leq) is said to be total if for all $x, y \in X, x \leq y$ or $x \geq y$.

- I. Let (X, \leq) be a finite total order and (Y, \leq) be an infinite total order. Show that X can be embedded in Y.
- Let L = {≤} and T be a consistent L-theory containing the theory of infinite total orders. Let (X,≤) be a total order, show that Δ(X) ∪ T is consistent.
- 3. Show that T_{\forall} is equivalent to the theory of total orders.