Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu www.normalesup.org/~srideau/eng/teaching

Homework 8

Due November 12th

Problem 1:

- I. Let x, y be in A, t is their lower upper bound in (A, ≤') if and only if for all z ∈ A such that x ≤' z and y ≤' z then t ≤' z, i.e. if z ≤ x and z ≤ y then z ≤ t. It follows that t exists and t in the upper lower bound of x and y in (A, ≤). In other terms x ∪' y = x ∩ y. Similarly, the upper lower bound of x and y in (A, ≤') exists and is equal to x ∪ y. Moreover 1 is the smallest element in (A, ≤') and 0 is the greatest element in (A, ≤'). So (A, ≤') is a lattice. Because ∩ and ∪ distribute over one another, (A, ≤') is distributive. Finally, let x ∈ A, the completment (if it exists) of x in (A, ≤') is y such that x ∩' y = 0' and x ∪' y = 1', i.e. x ∪ y = 1 and x ∩ y = 0. So y = x^c works.
- 2. Because (x^c)^c = x, the map x → x^c is surjective. To prove that it is an isomorphism of Boolean algebras, we only have to show that x ≤ y if and only if x^c ≤ ' y^c, that is y^c ≤ x^c. We have y^c ≤ x^c if and only if y^cx^c = y^c if and only if (1+y)(1+x) = 1+y+x+yx = 1+y if and only if yx = -x = x which is equivalent to x ≤ y.
- 3. As seen before, we have 0' = 1 and 1' = 0. Because complementation is an isomorphism between (A, \leq) and (A, \leq') (and it is its own inverse), we have $x + y = (x^{\mathbf{c}} + y^{\mathbf{c}})^{\mathbf{c}} = 1 + (1+x+1+y) = 1+x+y$ and $x \cdot y = (x^{\mathbf{c}} \cdot y^{\mathbf{c}})^{\mathbf{c}} = 1+(1+x)(1+y) = 1+1+x+y+xy = x+y+xy$.

Problem 2:

- I. Let $Y \subseteq \mathcal{P}(E)$ and let $Z = \bigcup_{X_i n Y} X$. Then $Z \in \mathcal{P}(E)$ is an upper bound of Y and it is contained in all sets that contain all the $X \in Y$, i.e. Z is the lower upper bound of Y.
- 2. Let us first assume that *B* is complete (the converse is easily obtained by considering f^{-1} instead of *f*). Let $X \subseteq A$. We define $Y = f(X) \subseteq B$. Because *B* is complete, *Y* has a lower upper bound *Z* in *B*. Let $T = f^{-1}(Z)$.

Then for all $a \in X$, $f(a) \in Y$ and hence $f(a) \leq Z = f(T)$, so $a \leq T$. Moreover if T' is an upper bound of X, f(T') is an upper bound of Y and hence $f(T) \leq Z \leq f(T')$, so $T \leq T'$. It follows that T is the lower upper bound of Y

By the previous question an the previous problem, (A,≤) is complete if and only if (A,≤') is complete. But a lower upper bound in (A,≤') is an upper lower bound in (A,≤). Moreover, by the previous question, the upper lower bound of X in (A,≤) is the image by complement of the lower upper bound of X^c in (A,≤), so:

$$\bigcap_{x \in X} x = (\bigcup_{x \in X} x^{\mathbf{c}})^{\mathbf{c}}.$$

4. Let us assume that $a \notin x$ for all $x \in X$. Then, because a is an atom, $a \notin x^{c}$ and hence $a \notin \bigcap_{x \in X} x^{c} = (\bigcup_{x \in X} x)^{c}$. In particular, $a \notin \bigcup_{x \in X} x$.

5. Let us define $h : A \to \mathcal{P}(\mathcal{A})$ by $h(x) = \{a \in \mathcal{A} : a \leq x\}$. Let us first show that h is surjective. Let $X \subseteq \mathcal{A}$ and $x = \bigcup_{a \in X} a$. For all $a \in X$, we have $a \leq x$, so $X \subseteq h(x)$. Furthermore, if $e \in \mathcal{A}$ and $e \leq x = \bigcup_{a \in X} a$, by the previous question $e \leq a$ for some $a \in X$, but because both e and a are atoms, we must have a = e. It follows that h(x) = X.

Let us now assume that $x \leq y$. Then for all $a \in A$, if $a \leq x$ then $a \leq y$, so $h(x) \subseteq h(y)$. Conversely, if $x \leq y$ then $x(1+y) \neq 0$ and hence there is an atom $a \leq x(1+y)$. We have $a \leq x$ and hence $a \in h(x)$, but $a \leq 1+x = x^{c}$ so $a \leq y$ and thus $a \notin h(y)$; so $h(x) \notin h(y)$.

We have just showed that h is surjective and $x \leq y$ if and only if $h(x) \subseteq h(y)$, so h is indeed an isomorphism of Boolean algebras.