Homework 8

Due November i2th

Problem I :

I. Let x, y be in A, t is their lower upper bound in $\left(A, \leqslant^{\prime}\right)$ if and only if for all $z \in A$ such that $x \leqslant^{\prime} z$ and $y \leqslant^{\prime} z$ then $t \leqslant^{\prime} z$, i.e. if $z \leqslant x$ and $z \leqslant y$ then $z \leqslant t$. It follows that t exists and t in the upper lower bound of x and y in (A, \leqslant). In other terms $x \cup^{\prime} y=x \cap y$.
Similarly, the upper lower bound of x and y in $\left(A, \leqslant^{\prime}\right)$ exists and is equal to $x \cup y$. Moreover 1 is the smallest element in $\left(A, \leqslant^{\prime}\right)$ and 0 is the greatest element in $\left(A, \leqslant^{\prime}\right)$. So $\left(A, \leqslant^{\prime}\right)$ is a lattice. Because \cap and \cup distribute over one another, $\left(A, \leqslant^{\prime}\right)$ is distributive. Finally, let $x \in A$, the completment (if it exists) of x in $\left(A, \leqslant^{\prime}\right)$ is y such that $x \cap^{\prime} y=0^{\prime}$ and $x \cup^{\prime} y=1^{\prime}$, i.e. $x \cup y=1$ and $x \cap y=0$. So $y=x^{\mathbf{c}}$ works.
2. Because $\left(x^{\mathbf{c}}\right)^{\mathbf{c}}=x$, the map $x \mapsto x^{\mathbf{c}}$ is surjective. To prove that it is an isomorphism of Boolean algebras, we only have to show that $x \leqslant y$ if and only if $x^{\mathbf{c}} \leqslant^{\prime} y^{\mathbf{c}}$, that is $y^{\mathbf{c}} \leqslant x^{\mathbf{c}}$. We have $y^{\mathbf{c}} \leqslant x^{\mathbf{c}}$ if and only if $y^{\mathbf{c}} x^{\mathbf{c}}=y^{\mathbf{c}}$ if and only if $(1+y)(1+x)=1+y+x+y x=1+y$ if and only if $y x=-x=x$ which is equivalent to $x \leqslant y$.
3. As seen before, we have $0^{\prime}=1$ and $1^{\prime}=0$. Because complementation is an isomorphism between (A, \leqslant) and $\left(A, \leqslant^{\prime}\right)$ (and it is its own inverse), we have $x+^{\prime} y=\left(x^{\mathbf{c}}+y^{\mathbf{c}}\right)^{\mathbf{c}}=1+$ $(1+x+1+y)=1+x+y$ and $x \cdot^{\prime} y=\left(x^{\mathbf{c}} \cdot y^{\mathbf{c}}\right)^{\mathbf{c}}=1+(1+x)(1+y)=1+1+x+y+x y=x+y+x y$.

Problem 2:

I. Let $Y \subseteq \mathcal{P}(E)$ and let $Z=\bigcup_{X_{i} n Y} X$. Then $Z \in \mathcal{P}(E)$ is an upper bound of Y and it is contained in all sets that contain all the $X \in Y$, i.e. Z is the lower upper bound of Y.
2. Let us first assume that B is complete (the converse is easily obtained by considering f^{-1} instead of f). Let $X \subseteq A$. We define $Y=f(X) \subseteq B$. Because B is complete, Y has a lower upper bound Z in B. Let $T=f^{-1}(Z)$.
Then for all $a \in X, f(a) \in Y$ and hence $f(a) \leqslant Z=f(T)$, so $a \leqslant T$. Moreover if T^{\prime} is an upper bound of $X, f\left(T^{\prime}\right)$ is an upper bound of Y and hence $f(T) \leqslant Z \leqslant f\left(T^{\prime}\right)$, so $T \leqslant T^{\prime}$. It follows that T is the lower upper bound of Y
3. By the previous question an the previous problem, (A, \leqslant) is complete if and only if $\left(A, \leqslant^{\prime}\right)$ is complete. But a lower upper bound in $\left(A, \leqslant^{\prime}\right)$ is an upper lower bound in (A, \leqslant). Moreover, by the previous question, the upper lower bound of X in (A, \leqslant) is the image by complement of the lower upper bound of $X^{\mathbf{c}}$ in (A, \leqslant), so:

$$
\bigcap_{x \in X} x=\left(\bigcup_{x \in X} x^{\mathbf{c}}\right)^{\mathbf{c}} .
$$

4. Let us assume that $a \npreceq x$ for all $x \in X$. Then, because a is an atom, $a \leqslant x^{\mathbf{c}}$ and hence $a \leqslant \bigcap_{x \in X} x^{\mathbf{c}}=\left(\bigcup_{x \in X} x\right)^{\mathbf{c}}$. In particular, $a \not \ddagger \bigcup_{x \in X} x$.
5. Let us define $h: A \rightarrow \mathcal{P}(\mathcal{A})$ by $h(x)=\{a \in \mathcal{A}: a \leqslant x\}$. Let us first show that h is surjective. Let $X \subseteq \mathcal{A}$ and $x=\cup_{a \in X} a$. For all $a \in X$, we have $a \leqslant x$, so $X \subseteq h(x)$. Furthermore, if $e \in \mathcal{A}$ and $e \leqslant x=\bigcup_{a \in X} a$, by the previous question $e \leqslant a$ for some $a \in X$, but because both e and a are atoms, we must have $a=e$. It follows that $h(x)=X$.

Let us now assume that $x \leqslant y$. Then for all $a \in \mathcal{A}$, if $a \leqslant x$ then $a \leqslant y$, so $h(x) \subseteq h(y)$. Conversely, if $x \not \leq y$ then $x(1+y) \neq 0$ and hence there is an atom $a \leqslant x(1+y)$. We have $a \leqslant x$ and hence $a \in h(x)$, but $a \leqslant 1+x=x^{\mathbf{c}}$ so $a \not \leq y$ and thus $a \notin h(y)$; so $h(x) \nsubseteq h(y)$. We have just showed that h is surjective and $x \leqslant y$ if and only if $h(x) \subseteq h(y)$, so h is indeed an isomorphism of Boolean algebras.

