silvain.rideau@berkeley.edu www.normalesup.org/~srideau/eng/teaching

Homework 8

Due November 12th

Problem 1:

Let $(A, 0, 1, +, \cdot)$ be a boolean algebra. For all x and $y \in A$, define $x \leq y$ to hold if $y \leq x$ holds.

- I. Prove that (A, \leq') is a distributive, complemented lattice.
- 2. Prove that $x \mapsto x^c$ is a Boolean algebra isomorphism between (A, \leq) and (A, \leq') .
- 3. Let $(A, 0', 1', +', \cdot')$ be the Boolean algebra structure on A induced by \leq' . Describe 0', 1', +' and \cdot' in terms of 0, 1, + and \cdot .

Problem 2:

A Boolean algebra A is said to be complete if every set $X \subseteq A$ has a lower upper bound (which we denote by $\bigcup_{x \in X} x$).

- I. Let *E* be some set. Show that $\mathcal{P}(E)$ is a complete Boolean algebra (for the usual boolean algebra structure).
- 2. Let $f : A \rightarrow B$ be an isomorphism of Boolean algebras. Show that A is complete if and only if B is complete.
- 3. Show that a Boolean algebra *A* is complete if and only if every set $X \subseteq A$ has an upper lower bound (which we denote by $\bigcap_{x \in X} x$) and show that $\bigcap_{x \in X} x = (\bigcup_{x \in X} x^{\mathbf{c}})^{\mathbf{c}}$.
- 4. Let $a \in A$ be an atom and $X \subseteq A$. Show that if $a \leq \bigcup_{x \in X} x$ then $a \leq x$ for some $x \in X$.
- 5. Show that every atomic complete Boolean algebra is isomorphic to the Boolean algebra $\mathcal{P}(\mathcal{A})$ of its set of atoms \mathcal{A} .