Silvain Rideau 1091 Evans

Solutions to homework 10

Due December 1st

Problem 1 :

- 1. Let $\Delta = \lambda x(x)x$. There are eight λ -terms that are reducts of $(\lambda x((I)x)x)\lambda x((I)x)x$:
 - $(\lambda x ((I)x)x)\lambda x ((I)x)x$ itself,
 - $(\Delta)\lambda x ((I)x)x$,
 - $(\lambda x ((I)x)x)\Delta$,
 - $(\Delta)\Delta$,
 - $((I)\lambda x ((I)x)x)\lambda x ((I)x)x,$
 - $((I)\Delta)\lambda x ((I)x)x$,
 - $((I)\lambda x ((I)x)x)\Delta$,
 - $((I)\Delta)\Delta$.
- 2. The sixteen reducts of ((W)I)WI are:
 - ((W)I)WI itself,
 - $(\lambda y((I)y)y)(W)I$,
 - $(\Delta)(W)I$,
 - $(\Delta)\lambda y((I)y)y,$
 - $((W)I)\lambda y((I)y)y,$
 - $((W)I)\Delta$,
 - $(\lambda y ((I)y)y)\Delta$,
 - $(\Delta)\Delta$,
 - $(\lambda y((I)y)y)\lambda y((I)y)y,$
 - ((I)(W)I)WI,
 - $((I)\lambda y((I)y)y)(W)I$,
 - $((I)\Delta)(W)I$,
 - $((I)\Delta)\lambda y((I)y)y$,
 - $((I)(W)I)\lambda y((I)y)y,$
 - $((I)(W)I)\Delta$,
 - $((I)\lambda y((I)y)y)\Delta$,
 - $((I)\Delta)\Delta$,
 - $((I)\lambda y((I)y)y)\lambda y((I)y)y$.

And hopefully, I have not forgotten any.

Problem 2:

1. We have:

$$((\overline{m})f)((\overline{n})f)x \rightarrow_{\beta} ((\overline{m})f)(\lambda x t_{n})x \rightarrow_{\beta} ((\overline{m})f)t_{n} \rightarrow_{\beta} (\lambda x t_{m})t_{n} \rightarrow_{\beta} (t_{m})_{t_{n}/x}.$$

We now prove by induction on *m* that $(t_m)_{t_n/x} = t_{m+n}$. If m = 0, $(t_m)_{t_n/x} = t_n$. Otherwise $(t_{m+1})_{t_n/x} = (f)(t_m)_{t_n/x} = (f)t_{m+n} = t_{m+1+n}$.

2. Let $S = \lambda n \lambda f \lambda x ((n) f)(f) x$. We have:

$$\begin{array}{rcl} (S)\overline{n} & \rightarrow_{\beta} & \lambda f \lambda x \left((\overline{n})f\right)(f) x \\ & \rightarrow_{\beta} & \lambda f \lambda x \left(\lambda x \, t_{n}\right) t_{1} \\ & \rightarrow_{\beta} & \lambda f \lambda x \left(t_{n}\right)_{t_{1}/x} \\ & = & \lambda f \lambda x \, t_{n+1}. \end{array}$$

In fact, $S' = \lambda n \lambda f \lambda x (f)((n)f) x$ also works.

3. Let $A = \lambda m \lambda n \lambda f \lambda x ((m) f)((n) f) x$. We have:

$$((A)\overline{m})\overline{n} \rightarrow_{\beta} (\lambda n\lambda f\lambda x ((\overline{m})f)((n)f)x)\overline{n} \rightarrow_{\beta} \lambda f\lambda x ((\overline{m})f)((\overline{n})f)x \rightarrow^{\star}_{\beta} \lambda f\lambda x t_{m+n}.$$

Note that $A' = \lambda m \lambda n ((m)S)n$ also works.

4. Let $M = \lambda m \lambda n \lambda f(m)(n) f$. We have:

$$((M)\overline{m})\overline{n} \rightarrow_{\beta} \lambda n\lambda f(\overline{m})(n)f \rightarrow_{\beta} \lambda f(\overline{m})(\overline{n})f \rightarrow_{\beta} \lambda f(\overline{m})\lambda x t_{n} \rightarrow_{\beta} \lambda f\lambda x(t_{m})\lambda x t_{n}/f$$

Let us now show, by induction on m, that $(t_m)_{\lambda x t_n/f} \rightarrow^*_{\beta} t_{m \cdot n}$. If m = 0, then $(t_m)_{\lambda x t_n/f} = x = t_0$. Otherwise,

$$(t_{m+1})_{\lambda x t_n/f} = ((f)t_m)_{\lambda x t_n/f} = (\lambda x t_n)(t_m)_{\lambda x t_n/f}$$

$$\rightarrow^{\star}_{\beta} \quad (\lambda x t_n)t_{m \cdot n}$$

$$\rightarrow_{\beta} \quad (t_n)_{t_m \cdot n/x}$$

$$= \quad t_{n+m \cdot n}$$

$$= \quad t_{(m+1) \cdot n}.$$

Note that $M' = \lambda m \lambda n((m)(A)n)\underline{0}$ also works.

5. Let $E = \lambda m \lambda n \lambda f \lambda x (((m)n)f)x$. We have:

$$((E)\overline{m})\overline{n} \rightarrow_{\beta} \lambda n\lambda f\lambda x (((\overline{m})n)f)x \rightarrow_{\beta} \lambda f\lambda x (((\overline{m})\overline{n})f)x \rightarrow_{\beta} \lambda f\lambda x ((\lambda x (t_m)_{\overline{n}/f})f)x \rightarrow_{\beta} \lambda f\lambda x (((t_m)_{\overline{n}/f})_{f/x})x.$$

If m = 0, $((t_0)_{\overline{n}/f})_{f/x} = x_{f/x} = f$ and we have the expected result. If $m \ge 1$, we show by induction on m that $((t_m)_{\overline{n}/f})_{f/x} \rightarrow^{\star}_{\beta} \lambda x t_{n^m}$. If m = 1,

$$((t_1)_{\overline{n}/f})_{f/x} = ((\overline{n})x)_{f/x} = (\overline{x})f = \lambda x t_n.$$

Otherwise,

$$((t_{m+1})_{\overline{n}/f})_{f/x} = (((f)t_m)_{\overline{n}/f})_{f/x}$$

$$= (\overline{n})((t_m)_{\overline{n}/f})_{f/x}$$

$$\rightarrow^{\star}_{\beta} (\overline{n})\lambda x t_{n^m}$$

$$\rightarrow_{\beta} \lambda x (t_n)_{\lambda x t_{n^m}/f}$$

$$\rightarrow^{\star}_{\beta} \lambda x t_{n \cdot n^m}$$

$$= \lambda x t_{n^{m+1}}.$$

It follows that:

$$((E)\overline{m})\overline{n} \to^{\star}_{\beta} \lambda f \lambda x (\lambda x t_{n^{m+1}}) x \\ \to_{\beta} \lambda f \lambda x t_{n^{m+1}}.$$

Note that $E' = \lambda m \lambda n((m)(M)n) \underline{1}$ also works.

Problem 3:

1. Let us prove by induction on n that $\{f:A \to A, x:A\} \vdash t_n:A$ holds. If n=0, then $t_0=x$ and

$$(Ax) \overline{\{f: A \to A, x: A\} \vdash x: A}$$

Let us now assume that $\{f : A \to A, x : A\} \vdash t_n : A$ holds. We have the following derivation:

$$\underset{(\rightarrow_E)}{\operatorname{Ax}} \underbrace{\frac{\vdots}{f:A \rightarrow A \vdash f:A \rightarrow A}}_{\{f:A \rightarrow A, x:A\} \vdash (f)t_n:A} \underbrace{ \begin{array}{c} \vdots\\ f:A \rightarrow A, x:A \\ \in f:A \rightarrow A, x:A \\ \in f:A \rightarrow A, x:A \\ \in f:A \rightarrow A, x:A \\ i \in f:A \\ i \in f$$

We can now conclude by the followind derivation:

$$\begin{array}{c} \vdots \\ (\rightarrow_I) \frac{\{f: A \rightarrow A, x: A\} \vdash t_n : A}{f: A \rightarrow A \vdash \lambda x \, t_n : A \rightarrow A} \\ (\rightarrow_I) \frac{}{\vdash \lambda f \lambda x \, t_n : (A \rightarrow A) \rightarrow (A \rightarrow A)} \end{array}$$

2. Let $\Gamma = \{x : A \to (B \to C), y : A \to B, z : A\}$. We have the following derivation:

$$\begin{array}{c} \operatorname{Ax} & \overline{\Gamma \vdash x : A \to (B \to C)} & \operatorname{Ax} \overline{\Gamma \vdash z : A} & \operatorname{Ax} \overline{\Gamma \vdash y : A \to B} & \operatorname{Ax} \overline{\Gamma \vdash z : A} \\ (\to_E) & \overline{\Gamma \vdash (x)z : B \to C} & (\to_E) & \overline{\Gamma \vdash (y)z : B} \\ & (\to_E) & \overline{\Gamma \vdash (x)z : B \to C} & \overline{\Gamma \vdash (x)z : (y)z : C} \\ & (\to_I) & \overline{\{x : A \to (B \to C), y : (A \to B)\} \vdash \lambda z ((x)z)(y)z : (A \to C)} \\ & (\to_I) & \overline{\{x : A \to (B \to C) \vdash \lambda y \lambda z ((x)z)(y)z : (A \to B) \to (A \to C))} \\ & (\to_I) & \overline{\{x : A \to (B \to C) \vdash \lambda y \lambda z ((x)z)(y)z : (A \to B) \to (A \to C))} \end{array}$$

3. Let us prove that $((T)K)K \vdash A \rightarrow A$ holds for any $A \in T$. First for any A and $B \in T$, we have the following derivation:

$$Ax \overline{\{x:A,y:B\} \vdash x:A} \\ (\rightarrow_I) \overline{\frac{\{x:A \vdash \lambda y : B \} \vdash x:A}{x:A \vdash \lambda y : B \Rightarrow A}} \\ (\rightarrow_I) \overline{\frac{\{x:A \vdash \lambda y : B \Rightarrow A}{\vdash K:A \Rightarrow (B \Rightarrow A)}}$$

We also have the following derivations:

$$(\rightarrow_E) \frac{\vdash T : (A \to ((B \to A) \to A)) \to (A \to (B \to A)) \to A \to A \qquad \vdash K : A \to ((B \to A) \to A)}{\vdash (T)K \vdash (A \to (B \to A)) \to A \to A}$$

 $\quad \text{and} \quad$

$$(\rightarrow_E) \frac{\vdash (T)K \vdash (A \rightarrow (B \rightarrow A)) \rightarrow A \rightarrow A}{\vdash ((T)K)K \vdash A \rightarrow A} \xrightarrow{\vdash K: A \rightarrow (B \rightarrow A)}$$