Homework 10

Due December 1st

Problem 1: Let $I = \lambda x x$ and $W = \lambda x \lambda y((x)y)y$.

- 1. Give all $t \in \Lambda$ such that $(\lambda x ((I)x)x)\lambda x ((I)x)x \rightarrow^{\star}_{\beta} t$.
- 2. Give all $t \in \Lambda$ such that $((W)I)(W)I \rightarrow_{\beta}^{\star} t$.

One good way of doing that is to draw the graph of reductions as we did in class.

Problem 2:

Let $t_n \in \Lambda$ be defined by induction on n as follows:

• $t_0 = x;$

•
$$t_{n+1} = (f)t_n$$
.

Let $\overline{n} = \lambda f \lambda x t_n$.

- 1. Show that $((\overline{m})f)((\overline{n})f)x \rightarrow^{\star}_{\beta} t_{m+n};$
- 2. Find a λ -term S such that for all $n \in \mathbb{N}$, $(S)\overline{n} \rightarrow^{\star}_{\beta} \overline{n+1}$.
- 3. Find a λ -term A such that for all $n \in \mathbb{N}$, $((A)\overline{m})\overline{n} \rightarrow^{\star}_{\beta} \overline{m+n}$.
- 4. Find a λ -term M such that for all $n \in \mathbb{N}$, $((M)\overline{m})\overline{n} \rightarrow^{\star}_{\beta} \overline{m \cdot n}$.
- 5. Find a λ -term E such that for all $n \in \mathbb{N}$, $((E)\overline{m})\overline{n} \rightarrow^{\star}_{\beta} \overline{m^n}$.

Problem 3 :

- 1. Show that $\vdash \overline{n} : (A \to A) \to (A \to A)$ for any type A.
- 2. Let $T = \lambda x \lambda y \lambda z ((x)z)(y)z$. Show that $\vdash T : (A \to (B \to C)) \to ((A \to B) \to (A \to C))$.
- 3. Let $K = \lambda x \lambda y x$. Is the term ((T)K)K typable?