Homework 10

Due December 1st

Problem 1:

Let $I=\lambda x x$ and $W=\lambda x \lambda y((x) y) y$.

1. Give all $t \in \Lambda$ such that $(\lambda x((I) x) x) \lambda x((I) x) x \rightarrow{ }_{\beta}^{\star} t$.
2. Give all $t \in \Lambda$ such that $((W) I)(W) I \rightarrow_{\beta}^{\star} t$.

One good way of doing that is to draw the graph of reductions as we did in class.

Problem 2:

Let $t_{n} \in \Lambda$ be defined by induction on n as follows:

- $t_{0}=x$;
- $t_{n+1}=(f) t_{n}$.

Let $\bar{n}=\lambda f \lambda x t_{n}$.

1. Show that $((\bar{m}) f)((\bar{n}) f) x \rightarrow{ }_{\beta}^{\star} t_{m+n}$;
2. Find a λ-term S such that for all $n \in \mathbb{N},(S) \bar{n} \rightarrow_{\beta}^{\star} \overline{n+1}$.
3. Find a λ-term A such that for all $n \in \mathbb{N},((A) \bar{m}) \bar{n} \rightarrow_{\beta}^{\star} \overline{m+n}$.
4. Find a λ-term M such that for all $n \in \mathbb{N},((M) \bar{m}) \bar{n} \rightarrow{ }_{\beta}^{\star} \overline{m \cdot n}$.
5. Find a λ-term E such that for all $n \in \mathbb{N},((E) \bar{m}) \bar{n} \rightarrow_{\beta}^{\star} \overline{m^{n}}$.

Problem 3 :

1. Show that $\vdash \bar{n}:(A \rightarrow A) \rightarrow(A \rightarrow A)$ for any type A.
2. Let $T=\lambda x \lambda y \lambda z((x) z)(y) z$. Show that $\vdash T:(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow$ C)).
3. Let $K=\lambda x \lambda y x$. Is the term $((T) K) K$ typable?
