Solutions to Midterm

October 15th

Problem 1:

1. Here is the truth table:

X	Y	$\neg X$	$\neg Y$	$Y \rightarrow X$	$\neg Y \leftrightarrow[Y \Rightarrow X]$	$\neg X \rightarrow[\neg Y \leftrightarrow[Y \Rightarrow X]]$
0	0	1	1	1	1	1
0	1	1	0	0	1	1
1	0	0	1	1	1	1
1	1	0	0	1	0	1

2. Let us first derive $\neg Y \vdash Y \rightarrow X$:

$$
\left(\begin{array}{l}
(\mathrm{Ax}) \frac{\mathrm{Y}}{\left(\neg_{E}\right)} \frac{(\mathrm{Ax}) \overline{\neg Y \vdash \neg Y}}{\left(\rightarrow_{I}\right) \frac{\{\neg Y, Y\} \vdash X}{\neg Y \vdash Y \rightarrow X}}
\end{array}\right.
$$

Now, let us derive $\{\neg X, Y \rightarrow X\} \vdash \neg Y$:

And now, let us put these two derivations toguether:

$$
\left(\leftrightarrow \leftrightarrow_{I}\right) \frac{\vdots Y \vdash Y \rightarrow X}{\vdots} \begin{gathered}
\vdots \\
\left(\rightarrow_{I}\right) \frac{\neg \neg X, Y \rightarrow X\} \vdash \neg Y}{\vdash \neg X \rightarrow[\neg Y \leftrightarrow[Y \Rightarrow X]]}
\end{gathered}
$$

Problem 2:

Let $\varphi \in \Gamma$. By hypothesis, $\Delta \vDash \varphi$. By the compactness theorem, there exists $\Delta_{\varphi} \subseteq \Delta$ finite, such that $\Delta_{\varphi} \vDash \varphi$. Let $\Delta_{0}=\bigcup_{\varphi \in \Gamma} \Delta_{\varphi}$. This is indeed a finite subset of Δ. Because $\Delta_{0} \subseteq \Delta$, we obviously have that $\Delta \vDash \Delta_{0}$ (I do not think I ever used this notation before, but it obviously means that Δ implies all formulas in Δ_{0}). By construction, $\Delta_{0} \subseteq \vDash \Gamma$ and hence, because $\Gamma \vDash \Delta$, we also have $\Delta_{0} \vDash \Delta$.

Problem 3:

1. Let us first assume that $q=0$ then $b=q \cdot a$ if and only if $b=0$ and $\psi_{0}(x, y):=$ $\forall z z+y=y$ works. If we assume that $q=n / m>0$ where n and m a positive integers, then $b=q a$ if and only if $n \cdot b=m \cdot a$ and $\psi_{q}(x, y):=\sum_{i=1}^{m} x=\sum_{i=1}^{n} y$ has the desired property. Finally, if $q=-n / m<0$, then $b=q \cdot a$ if and only if $n \cdot b+m \cdot a=0$ and $\psi_{q}(x, y):=\forall z \sum_{i=1}^{m} x+\sum_{i=1}^{n} y+z=z$ has the required propery.
2. Let $f: \mathcal{M} \rightarrow \mathcal{M}$ be an automorphism. Let $q=f(1)$. For all $r \in \mathbb{Q}, \mathcal{M} \vDash \varphi_{r}(1, r)$. Because f is an automorphism, we also have $\mathcal{M} \vDash \varphi_{r}(f(1), f(r))$, i.e. $f(r)=$ $r \cdot f(1)=r \cdot q$. So all automorphims of \mathcal{M} are of this form.

Moreover, if q is not zero, for all $a, b \in \mathbb{Q}, q \cdot a \in \mathbb{Q}, q \cdot(a+b)=q \cdot a+q \cdot b$ and $q \cdot a=q \cdot b$ if and only if $a=b$. Hence the map $x \mapsto q \cdot x$ is a monomorphism $\mathbb{Q} \rightarrow \mathbb{Q}$. Moreover $q \cdot\left(a \cdot q^{-1}\right)=a$ and it is therefore also surjective, i.e. it is an automorphism ${ }^{1}$.
3. Let $q \in \mathbb{Q}$ be such that there exists a formula $\varphi_{q}(x)$ such that $\mathcal{M} \vDash \varphi(a)$ if and onl if $a=q$. Let f be the automorphism of \mathcal{M} sending x to $2 \cdot x$. Then $\mathcal{M} \vDash \varphi_{q}(f(q))$ and hence $2 \cdot q=f(q)=q$. But that is only possible if $q=0$.
4. Let us assume that θ exists. Then $\mathcal{M} \vDash \theta(1,1,1)$ and $\mathcal{M} \vDash \theta(f(1), f(1), f(1))$, where f is as above. Then we should have $4=2 \cdot 2=f(1) \cdot f(1)=f(1)=2$, which is absurd. So θ does not exist.
5. An automorphism of \mathcal{N} is, in particular, an automorphism of \mathcal{M}, and is there fore of the form $x \mapsto q \cdot x$ for some $q \in \mathbb{Q} \backslash\{0\}$. But because \mathcal{N} contains a constant interpreted as 1 , if $x \mapsto q \cdot x$ is an automorphism of \mathcal{N}, then $q=q \cdot 1=1$ and the automorphism is the identity (which is indeed an automorphism of \mathcal{N}).

[^0]
[^0]: ${ }^{1}$ I agree that because of not formulating the question the way I indented to initially, I technically did not ask that second part. Nevertheless, if you wanted to use that $x \mapsto q \cdot x$ was an automorphism later on, you needed to prove it at some point...

