Silvain Rideau 1091 Evans

Solutions to Midterm

October 15th

Problem 1:

1. Here is the truth table:

X	Y	$\neg X$	$\neg Y$	$Y \to X$	$\neg Y \leftrightarrow [Y \Rightarrow X]$	$\neg X \to [\neg Y \leftrightarrow [Y \Rightarrow X]]$
0	0	1	1	1	1	1
0	1	1	0	0	1	1
1	0	0	1	1	1	1
1	1	0	0	1	0	1

2. Let us first derive $\neg Y \vdash Y \rightarrow X$:

$$(Ax)_{(\neg E)} \frac{\overline{Y \vdash Y} \quad (Ax) \overline{\neg Y \vdash \neg Y}}{(\rightarrow_I) \frac{\{\neg Y, Y\} \vdash X}{\neg Y \vdash Y \rightarrow X}}$$

Now, let us derive $\{\neg X, Y \rightarrow X\} \vdash \neg Y$:

$$(\rightarrow_E) \frac{\overline{Y \vdash Y} \quad \overline{Y \rightarrow X \vdash Y \rightarrow X}}{(\neg_E) \frac{\{Y \rightarrow X, Y\} \vdash X}{(\vee_E) \frac{\{\neg X, Y \rightarrow X, Y\} \vdash \neg Y}{(\neg X, Y \rightarrow X, Y\} \vdash \neg Y}} \frac{}{\neg X \vdash \neg X}{\overline{(\neg X, Y \rightarrow X\} \vdash \neg Y}}$$

And now, let us put these two derivations toguether:

$$(\leftrightarrow_{I}) \frac{ \vdots \qquad \vdots \qquad \vdots \\ (\neg Y \vdash Y \to X \qquad \{\neg X, Y \to X\} \vdash \neg Y \\ (\rightarrow_{I}) \frac{ \neg X \vdash \neg Y \leftrightarrow [Y \Rightarrow X] }{ \vdash \neg X \to [\neg Y \leftrightarrow [Y \Rightarrow X]] }$$

Problem 2:

Let $\varphi \in \Gamma$. By hypothesis, $\Delta \models \varphi$. By the compactness theorem, there exists $\Delta_{\varphi} \subseteq \Delta$ finite, such that $\Delta_{\varphi} \models \varphi$. Let $\Delta_0 = \bigcup_{\varphi \in \Gamma} \Delta_{\varphi}$. This is indeed a finite subset of Δ . Because $\Delta_0 \subseteq \Delta$, we obviously have that $\Delta \models \Delta_0$ (I do not think I ever used this notation before, but it obviously means that Δ implies all formulas in Δ_0). By construction, $\Delta_0 \subseteq \models \Gamma$ and hence, because $\Gamma \models \Delta$, we also have $\Delta_0 \models \Delta$.

Problem 3:

1. Let us first assume that q = 0 then $b = q \cdot a$ if and only if b = 0 and $\psi_0(x, y) := \forall z \, z + y = y$ works. If we assume that q = n/m > 0 where n and m a positive integers, then b = qa if and only if $n \cdot b = m \cdot a$ and $\psi_q(x, y) := \sum_{i=1}^m x = \sum_{i=1}^n y$ has the desired property. Finally, if q = -n/m < 0, then $b = q \cdot a$ if and only if $n \cdot b + m \cdot a = 0$ and $\psi_q(x, y) := \forall z \sum_{i=1}^m x + \sum_{i=1}^n y + z = z$ has the required property.

2. Let $f: \mathcal{M} \to \mathcal{M}$ be an automorphism. Let q = f(1). For all $r \in \mathbb{Q}$, $\mathcal{M} \models \varphi_r(1, r)$. Because f is an automorphism, we also have $\mathcal{M} \models \varphi_r(f(1), f(r))$, i.e. $f(r) = r \cdot f(1) = r \cdot q$. So all automorphims of \mathcal{M} are of this form.

Moreover, if q is not zero, for all $a, b \in \mathbb{Q}, q \cdot a \in \mathbb{Q}, q \cdot (a+b) = q \cdot a + q \cdot b$ and $q \cdot a = q \cdot b$ if and only if a = b. Hence the map $x \mapsto q \cdot x$ is a monomorphism $\mathbb{Q} \to \mathbb{Q}$. Moreover $q \cdot (a \cdot q^{-1}) = a$ and it is therefore also surjective, i.e. it is an automorphism¹.

- 3. Let $q \in \mathbb{Q}$ be such that there exists a formula $\varphi_q(x)$ such that $\mathcal{M} \models \varphi(a)$ if and onl if a = q. Let f be the automorphism of \mathcal{M} sending x to $2 \cdot x$. Then $\mathcal{M} \models \varphi_q(f(q))$ and hence $2 \cdot q = f(q) = q$. But that is only possible if q = 0.
- 4. Let us assume that θ exists. Then $\mathcal{M} \models \theta(1,1,1)$ and $\mathcal{M} \models \theta(f(1), f(1), f(1))$, where f is as above. Then we should have $4 = 2 \cdot 2 = f(1) \cdot f(1) = f(1) = 2$, which is absurd. So θ does not exist.
- 5. An automorphism of \mathcal{N} is, in particular, an automorphism of \mathcal{M} , and is there fore of the form $x \mapsto q \cdot x$ for some $q \in \mathbb{Q} \setminus \{0\}$. But because \mathcal{N} contains a constant interpreted as 1, if $x \mapsto q \cdot x$ is an automorphism of \mathcal{N} , then $q = q \cdot 1 = 1$ and the automorphism is the identity (which is indeed an automorphism of \mathcal{N}).

¹I agree that because of not formulating the question the way I indented to initially, I technically did not ask that second part. Nevertheless, if you wanted to use that $x \mapsto q \cdot x$ was an automorphism later on, you needed to prove it at some point...