Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu www.normalesup.org/~srideau/eng/teaching

Midterm

October 15th

Recall that these are the rules for deduction in propositional logic:

$$(Ax) \frac{\Gamma \cup \{\varphi\} \vdash \varphi}{\Gamma \cup \{\varphi\} \vdash \psi} \qquad (\rightarrow_E) \frac{\Gamma_1 \vdash \varphi \rightarrow \psi}{\Gamma_1 \cup \Gamma_2 \vdash \psi} \frac{\Gamma_2 \vdash \varphi}{\Gamma_1 \cup \Gamma_2 \vdash \psi}$$
$$(\wedge_I) \frac{\Gamma_1 \vdash \varphi_1 \quad \Gamma_2 \vdash \varphi_2}{\Gamma_1 \cup \Gamma_2 \vdash \varphi_1 \land \varphi_2} \qquad (\wedge_{EL}) \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \qquad (\wedge_{ER}) \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2}$$
$$(\vee_{IL}) \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} \qquad (\vee_{IR}) \frac{\Gamma \vdash \varphi}{\Gamma \vdash \psi \lor \varphi}$$
$$(\vee_E) \frac{\Gamma_1 \cup \{\varphi_1\} \vdash \psi}{\Gamma_1 \cup \Gamma_2 \cup \{\varphi_1\} \vdash \psi} \qquad \Gamma_2 \cup \{\varphi_2\} \vdash \psi}{\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \vdash \psi} \qquad (\leftrightarrow_{ER}) \frac{\Gamma \vdash \varphi \leftrightarrow \psi}{\Gamma \vdash \psi \rightarrow \varphi}$$
$$(\leftrightarrow_I) \frac{\Gamma_1 \vdash \varphi}{\Gamma_1 \cup \varphi_2 \vdash \varphi_1} \leftarrow (\varphi \vdash \varphi) \qquad (\varphi \vdash \varphi) \vdash \varphi \leftarrow \varphi \vdash \varphi \vdash \varphi}{(\neg_E) \frac{\Gamma_1 \vdash \varphi}{\Gamma_1 \cup \varphi_2 \vdash \varphi}} \qquad (ExMid) \frac{\Gamma \vdash \varphi \lor \neg \varphi}{\Gamma \vdash \varphi \lor \neg \varphi}$$

Problem 1:

Let φ be the formula $(\neg X \rightarrow (\neg Y \leftrightarrow (Y \rightarrow X)))$.

- 1. Show, using a truth table, that φ is a tautology.
- 2. Show, providing a derivation, that $\vdash \varphi$ holds.

Problem 2:

Let Γ be a finite set of propositional formulas and Δ is a set of propositional formulas that is logically equivalent to Γ (i.e. for all $\varphi \in \Gamma$, $\Delta \models \varphi$ and for all $\psi \in \Delta$, $\Gamma \models \psi$). Show that there exists $\Delta_0 \subseteq \Delta$ finite such that Δ is logically equivalent to Δ_0 .

Problem 3:

Let $\mathcal{L} = \{+\}$ and \mathcal{M} be the \mathcal{L} -structure whose underlying set is \mathbb{Q} and + is interpreted as the addition.

- 1. Show that for all $q \in \mathbb{Q}$, there is a formula $\psi_q(x, y)$ such that $\mathcal{M} \models \psi_q(a, b)$ holds if and only if $b = q \cdot a$.
- 2. Show that all automorphisms of \mathcal{M} are of the form $x \mapsto q \cdot x$ for $q \in \mathbb{Q} \setminus \{0\}$.
- 3. Show that for all $q \in \mathbb{Q}$, if there exist a formula $\varphi_q(x)$ such that $\mathcal{M} \models \varphi_q(a)$ if and only if a = q, then q = 0.
- 4. Show that there does not exists a formula $\theta(x, y, z)$ such that $\mathcal{M} \models \theta(a, b, c)$ if and only if $c = a \cdot b$.
- 5. Let \mathcal{N} be the enrichment of \mathcal{M} to the language $\{+, c\}$ where c is a constant interpreted as 1 in \mathcal{M} . Show that the only automorphism of \mathcal{N} is the identity.