Midterm

October 15th

Recall that these are the rules for deduction in propositional logic:

$$
\begin{aligned}
& (\mathrm{Ax}) \overline{\Gamma \cup\{\varphi\} \vdash \varphi} \\
& \left(\rightarrow_{I}\right) \frac{\Gamma \cup\{\varphi\} \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} \quad\left(\rightarrow_{E}\right) \frac{\Gamma_{1} \vdash \varphi \rightarrow \psi \quad \Gamma_{2} \vdash \varphi}{\Gamma_{1} \cup \Gamma_{2} \vdash \psi} \\
& \left(\wedge_{I}\right) \frac{\Gamma_{1} \vdash \varphi_{1} \frac{\Gamma_{2} \vdash \varphi_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash \varphi_{1} \wedge \varphi_{2}} \quad\left(\wedge_{E L}\right) \frac{\Gamma \vdash \varphi_{1} \wedge \varphi_{2}}{\Gamma \vdash \varphi_{1}} \quad\left(\wedge_{E R}\right) \frac{\Gamma \vdash \varphi_{1} \wedge \varphi_{2}}{\Gamma \vdash \varphi_{2}}}{0} \\
& \left(\vee_{I L}\right) \frac{\Gamma \vdash \varphi}{\Gamma \vdash \varphi \vee \psi} \quad\left(\vee_{I R}\right) \frac{\Gamma \vdash \varphi}{\Gamma \vdash \psi \vee \varphi} \\
& \left(\vee_{E}\right) \frac{\Gamma_{1} \cup\left\{\varphi_{1}\right\} \vdash \psi \quad \Gamma_{2} \cup\left\{\varphi_{2}\right\} \vdash \psi}{\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \vdash \psi} \\
& \left(\leftrightarrow_{I}\right) \frac{\Gamma_{1} \cup\{\varphi\} \vdash \psi \quad \Gamma_{2} \cup\{\psi\} \vdash \varphi}{\Gamma_{1} \cup \Gamma_{2} \vdash \varphi_{1} \leftrightarrow \varphi_{2}} \quad\left(\leftrightarrow_{E L}\right) \frac{\Gamma \vdash \varphi \leftrightarrow \psi}{\Gamma \vdash \varphi \rightarrow \psi} \quad\left(\leftrightarrow_{E R}\right) \frac{\Gamma \vdash \varphi \leftrightarrow \psi}{\Gamma \vdash \psi \rightarrow \varphi} \\
& (\neg E) \frac{\Gamma_{1} \vdash \varphi \quad \Gamma_{2} \vdash \neg \varphi}{\Gamma_{1} \cup \Gamma_{2} \vdash \psi} \quad(\text { ExMid }) \overline{\Gamma \vdash \varphi \vee \neg \varphi}
\end{aligned}
$$

Problem 1:

Let φ be the formula $(\neg X \rightarrow(\neg Y \leftrightarrow(Y \rightarrow X)))$.

1. Show, using a truth table, that φ is a tautology.
2. Show, providing a derivation, that $\vdash \varphi$ holds.

Problem 2:

Let Γ be a finite set of propositional formulas and Δ is a set of propositional formulas that is logically equivalent to Γ (i.e. for all $\varphi \in \Gamma, \Delta \vDash \varphi$ and for all $\psi \in \Delta, \Gamma \vDash \psi$). Show that there exists $\Delta_{0} \subseteq \Delta$ finite such that Δ is logically equivalent to Δ_{0}.

Problem 3:

Let $\mathcal{L}=\{+\}$ and \mathcal{M} be the \mathcal{L}-structure whose underlying set is \mathbb{Q} and + is interpreted as the addition.

1. Show that for all $q \in \mathbb{Q}$, there is a formula $\psi_{q}(x, y)$ such that $\mathcal{M} \vDash \psi_{q}(a, b)$ holds if and only if $b=q \cdot a$.
2. Show that all automorphisms of \mathcal{M} are of the form $x \mapsto q \cdot x$ for $q \in \mathbb{Q} \backslash\{0\}$.
3. Show that for all $q \in \mathbb{Q}$, if there exist a formula $\varphi_{q}(x)$ such that $\mathcal{M} \vDash \varphi_{q}(a)$ if and only if $a=q$, then $q=0$.
4. Show that there does not exists a formula $\theta(x, y, z)$ such that $\mathcal{M} \vDash \theta(a, b, c)$ if and only if $c=a \cdot b$.
5. Let \mathcal{N} be the enrichement of \mathcal{M} to the language $\{+, c\}$ where c is a constant interpreted as 1 in \mathcal{M}. Show that the only automorphism of \mathcal{N} is the identity.
