The)\-Calculus

Silvain Rideau

December 7, 2015

The A-calculus was introduced by Church in one of the first attempt to formalize computa-
tion. Nowadays, it is not really used as a model of computation, nevertheless, it plays a major
role in studying the semantics of higher order languages and in proof theory (through the
study of typed A-calculus).

These notes were greatly inspired by [Krig3]

Definition o.1 (L):
Let V' be a (countable) set of variables and A =V U {(,), \}. The set L of \-terms is the smallest

set of words on A such that:
e VeI
e Iftand u € L, then (t)u € L;
e IfreVandte L, then \xt e L.

Elements of L are called \-terms. They should be thought of as functions. The A-term (¢)u
is the function ¢ applied to u and Az t is the function x ~ t.
1 will not prove it but there is a unique decomposition theorem for elements of L:

Proposition o0.2:
Let t be a \-term, then one and only one of the following cases holds:

o t=xforsomex eV,

o t = (v)u forsomev and u € L;

e t =X xuforsomezx eV andue L.
Moreover, in those three cases x, u and v are unique (Whenever they appear).
As usual we define the set of free and bound variables by induction on L:

Definition 0.3:
Let t be a \-term, we define fvar(t) and bvar(t) by induction on t:

o Ift = x, then fvar(t) = x and bvar(t) = &;

1 Substitution and «-equivalence

o Ift = (v)u, then fvar(t) = fvar(¢t) u fvar(u) and bvar(t) = bvar(t) U bvar(u);
o Ift = Az u, then fvar(t) = fvar(t) ~ {z} and bvar(t) = bvar(t) u {z}.

We define var(t) = fvar(t) u bvar(t).

1 Substitution and a-equivalence

As before, we also need to define substitution:

Definition 1.1 (Simple substitution):
Lettand s € L, v € V, we define L, by induction on t:

o Ift=um,thent,, =s;

o Ift=y =z, thenty, =y;

o Itt=(v)u, tyy = (Vejz)Us/as

o Ift =Xz u, thent,, =t

o Ift=Xyuandy + x, thent,), = \yug/,.

As usual, this notion of substitution does not give us the expected result if bvar(¢) nfvar(s) #
@. For example (\y yz),/, should be Az zy and not Ay yy. When studying propositional and
predicate logic, we where always capable of avoiding having to cope with this problem, but
here, we will have to. The solution is to consider the set A of A-terms up to renaming of
bound variables.

We will denote by |¢| the length of ¢ (as a word).

Lemmar.2:

Lette L,zandy eV, then[t| = [t,/,].

Proof . We proceed by induction on ¢. If t isa variables, so is ¢, /.., so they both have length one.
Ift = (u)v, then [t| = 2 + |u| + |v| and by induction [t, /,| = 2 + |uy | + [vy5] = 2 + [u + [v] = [¢].
Finally, if t = Az u thent,/, =t and the lemma is obvious or [t| = 2 + [u| = 2 + [uy /.| = [ty /|- ®

Lemmar1.3:
Lett,se€ Landx € V. Ifvisnot freeint thent, =t.

Proof . This is immediate by induction on ¢.]

Lemmar.4:
Lett, s € Land x € V. Assume that x € fvar(t) and bvar(t) u fvar(s) = @, then fvar(t,/,) =

(fvar(t) ~ {z}) ufvar(s) and bvar(t,/,) = bvar(t) u bvar(s).

Proof . We proceed by induction on t. If t = , then ¢, = s, fvar(t,,) = fvar(s) = (fvar(¢) ~
{z}) ufvar(s) and bvar(t/,) = bvar(s) = bvar(t) u bvar(s). If t = y # z, then x ¢ fvar(¢).

1 Substitution and «-equivalence

Ift = (u)v, then ty, = (ug,)vs, and fvar(ty,) = fvar(ug,) U fvar(vg,) = ((fvar(u) u
fvar(v)) \ {z}) ufvar(s) = (fvar(t) ~ {z}) u fvar(s) as = must be free in u or v (or both).
Moreover, bvar(t,,) = bvar(u,,) U fvar(v,,) = bvar(u) u bvar(v) u bvar(s) = bvar(t) u
bvar(s).

Ift = Ayuwithy # x, then t,/, = Ay uy,, fvar(ty),) = fvar(ug,) ~ {y} = ((fvar(u) ~ {z}) u
fvar(s)) Ny = (fvar(u) N {z,y}) ufvar(s) = (fvar(¢) \ {z}) U fvar(s), as y is not free in s,
and bvar(t; s) = bvar(u,/,) U {y} = bvar(u) ubvar(s) U {y} = bvar(t) U bvar(s).]

Lemmar.s:
Lett, s,u € Land x + y € V. Assume that © ¢ fvar(u) and y ¢ fvar(s) n bvar(t) then

(ts/m)u/y = (tu/y)su/y/z'

Proof . We proceed by induction on ¢. If ¢ = &, then (£,)y /y = Suyy and (ty/y)s, le = bsuyylz =
Sufy- It =y, (ts/x)uyy = tuyy = uand (tu/y)su/y/x =Us,, Iz = uby Lemma (1.3). If ¢ = z distinct
from x and y, (ts/x)u/y =z= (tu/y)su/y/x'

Ift = (v)w, then (ts/z)u/y = ((vs/x)u/y)(ws/x)u/y = ((Uu/y)su/y/x)(wu/y)su/y/x = (tu/y)su/y/x~
If t = \xzv, then (ts/:v)u/y = tu/y and (tu/y)su/y/ac = ()‘xvu/y)su/y/x =)\:L‘Uu/y = tu/y. If
t = Ayw, then, by hypothesis, y ¢ fvar(s), (ts/z)uy = (AYVsjz)ufy = \YVsje = tg, and
(tujy)s, sl = bsypyfz = tsfa by Lemma (1.3). Finally, if t = Az v where z is neither x nor y, then

(ts/x)u/y =Xz (Us/x)u/y =z (Uu/y)su/y/x = (tu/y)su/y/x' u

Corollary 1.6:
Lett, s,u€ Landx,yeV. Assume that x ¢ fvar(u) and y ¢ fvar(s), then (ts/z)u/y = (tusy)s/a-

Proof . As y ¢ fvar(s), by Lemma (1.3), 5,,/, = s and by Lemma (1.5), (ts/z)u/y = (tu/y)su/y/gc =
(tu/y)s/w' m

Definition 1.7 (a-conversion):
Let t and t’ be A-terms. We define t =, t' by induction on [t|:

N
o Ift =4 t' and u =, v, then (t)u =, (t')u';
o Ifty)s =a ty)e for somey ¢ var(t) uvar(t'), then Azt =, Ax't',

It is not immediately obvious that the above relation is an equivalence relation. To prove that
it is transitive, we will need the following:

Lemma1.8:
Let t and t’ € L be such that t =, t', then fvar(t) = fvar(t').

Proof . Let us proceed by induction on |t|. If ¢ = x, then ¢’ = x and fvar(t) = {2} = fvar(¢').
Ift = (u)v, thent' = (u')v" with u =, vand v’ =, v" and by induction fvar(t) = fvar(u) u
fvar(v) = fvar(u’) U fvar(v’) = fvar(t').

Finally, if ¢ = Az u, then ¢’ = A\z" v and for some y not appearing in ¢ and t', u,/, =a u; Jar

We have fvar(t) = fvar(u) \ {z}, fvar(t') = fvar(u') ~ {2’} and fvar(u,,,) = fvar(u;/m,). It

1 Substitution and «-equivalence

follows that (fvar(u) ~ {z}) u{y} = (fvar(u") ~ {z'}) U {y} and because y cannot appear in
u, fvar(t) = fvar(u) ~ {z} = tvar(u) ~ {2’} = fvar ().]

Lemmar.9:
Let t and t' be two A-terms, x, x', y and y' ¢ var(t) uvar(t'). Ift,, = tly/x’ thent, , =a t;,/x,.

Proof . We proceed by induction on |¢|.
Let us first assume that ¢t = z, then t,/, =y =, t; [t but the only term a-equivalent to y is y
itself, so t;/x, = y. As y does not appear in ¢/, we must have ¢’ = 2’ and ty o = y = t;,/x,. If

t=z+u, thent;/x, =z #yand hencet’' = 2 too. S0ty , =z = t;,/x,.
!/

lft - (U)U, then t;/m, = (uy/m)vy/x’ SO t’ = (u’)’U/ and uy/x, =a Uy/z. and Uglj/a}’ =« Uy/z- BY
induction wy,, ., Za tyrjp And V), 0 =0 vy ANA SOty yy oty

yjz SOt =

Az' v’ and for some w ¢ var(t) uvar(t')u{z,z'}, (uy/x)uhj/z = '(u;/x,)w/zl. By Corollary (1.6),
(uy/x)w/z = (uw/z)y/x and (u;/x,)w/zr = (u;/z,)y/x,. By induction (uw/z)y’/x =a (u;;/z’)y’/x’
and by Corollary (1.6) again, (ty//3)w/> =a (u; , /x/)w Jzrand by, =g t; e Wz =a s x', then

Finally, assume ¢ = Azu. Let us first assume that 2 # z and 2. Then t, Jor = AZU

Uy, = (“;/x')w/z' If 2’ € fvar(u'), then y € fvar(u;/x,) soy € fvar((u’y/x,)w/z) = fvar(u) by
yl/xl. By
symmetry, the case z = 2’ # x is also taken care of. There remains the case z = x = z’ but in

that case t,), =t =, t' = t;,/x,- u

Lemma (1.8), a contradiction. So z’ ¢ fvar(u’) and u,,, = u:U/Z, ety =t=at' =t

Corollary1.10:
The relation =, is an equivalence relation.

Proof . Reflexivity, symmetry and transitivity are proved by induction. The proof of reflexivity
and symmetry is essentially straightforward. Let us prove transitivity.

Let ¢,t" and ¢ such that t =, t" and ¢’ =, t”. Let us proceed by induction on |¢|. If ¢ = z, then
t' =z hence t" = z. If t = (u)v, thent’ = (u")v" with u =, v’ and v =, v and t"" = (u"")v"”
with v’ =, v and v' =, v". By induction u =, v and v =, v"" and t =, ¢". 1If t = Ay u, then
t" = Ay’ v’ and for some z ¢ var(t) u var(t'), u., =a u’z/y,. Then we also have t" = \y" u”
and for some 2’ ¢ var(t') u var(t"), u, Iy =a u’, jy- By Lemma (1.9), we may assume that

z =2 ¢ var(t) uvar(t') uvar(t”). By induction, we have u., =, u’z’/ »and hencet =, t". m

Y

Definition r.11 (A):
We define A = L] =,,.

When t € L, we denote by t € A its =,-class.
We now wish to show that simple substitution induces a well defined notion of substitution
on A. But first, let us show that the length is preserved under =,:

Lemmar1.12:
Let t and t’' € L be such that t =, t', then |t| = |t'|.

Proof . We proceed by induction on [t|. If ¢ = z thent' = x and |¢t| = 1 = |t/|. 1If t = u(v), then
t" =u'(v") such that v’ =, wand v’ =, v. Then [t| = 2 + |u| + |v| = 2 + || + [v'| = [¢/|. Finally, if

1 Substitution and «-equivalence

t = Azru, thent’ = \z" " and for some y ¢ var(t) u var(t'), u,/, =a u;,/x,. It follows that, by

Lemma (r.2), [t = 2+ Ju| = 2+ |uy] = 2+ 0, | = 2+ || = |t/ n

y/x y' [z

Lemmar1.13:
Lett, t"and s € Landx € V. Ift =, t" and fvar(s) n (bvar(t) ubvar(t')) = @, thent,), =q t;/x.

Proof . We proceed by induction on the length of ¢. The proof is completely straightforward
ift =x € Vort=(u)v. Let us assume that ¢ = Ayuand t' = \y'v'. If y = z, then x
is not free in ¢. By Lemma (1.8), x is not free in ¢’ either and hence, by Lemma (1.3), ¢, Jz =
t=qt =t Ja The case y' = x is symmetric. So we can now assume that x is neither y nor

y'. Let z ¢ var(t) u var(t') U var(s). By definition of ¢ =, t', u,/, "Z/y

induction, (u./y)s/z Za (U, /y,)s /- Because y is bounded in ¢, it cannot be free in s (similarly
for 3y') and x # z so by Corollary (1.6), (Usjz)zpy = (uz/y)s/m =4 (u;/y,)s/x = (“;/x)Z/y” SO
755/96 =y Us/z Za MY ul, =t u

slx sfx”

, and hence, by

Sq U

Lemmar.14:
Lett,sand s' e Landx € V. If s = ', thenty), = tg ;.

Proof . We proceed by induction on t. The proof is completely straightforward if t = z € V
ort = (u)v. Let us assume that t = A\yu. If y = =, thent,), =t = t/,. So we can assume
y # x. By induction, uy/, =o ug/,. Let z ¢ fvar(t) u fvar(s) u fvar(s’). By Lemma (1.13),
(us/m)z/y o (us’/x)z/y and hence ts/x o ts’/x' u

Corollary 1.15:
Lett, t', sand s’ € Land x € V. Ift =, t' and fvar(s) n (bvar(t) U bvar(t')) = &, then

- gy
ts/x =« ts’/x'

Proof . By Lemma (1.13), 5/, =a t.) and by Lemma (1.14), ¢ Iz =a tl, /- We conclude by tran-
sitivity of =,,.]

Lemma 1.16:
Lett € L and X ¢V be finite. There exists t' € L such that bvar(t')n X = @ andt' =, t.

Proof . We proceed by induction on t. The proof is completely straightforward if t = z € V
ort = (u)v. Let us assume that ¢ = Azwu. By induction, there exists u’ such that v’ =,
uwand bvar(u') n X = @. Lety ¢ X uvar(u’), we want to show that ¢ =,)\yu;/x. Let

z ¢ var(t) uvar(u') u {y}. By Lemma(L.13), u./, =a u’z/x and, by Lemma (1.5), (“;/z)Z/y =

(“;/y)yz/y/x = u’z/x as y is not free in u’. So Uy Za (u’y/x) andt =, \y u'y/x.]

2y

We can now define a substitution operation on A:

Definition 1.17:
Lett, s € Aand v € V. We define t,, to be the class oft;,/x where t' € t and s’ € s are such that

fvar(s") nbvar(t') = @.

Note that this is well defined by Corollary (1.15) and Lemma (1.16).

2 [B-reduction

What we have done in this section is formalize the idea that whenever we pick a A-term, we
can always assume that the bound variables avoid any set of variables we wish (usually, the
variables that are free in other A-terms). In fact, we have essentially made the bound variables
nameless.

Note that the map (u,v) ~ (u)v and the map u — Az u are well defined. So the notations
(u)v and Ax u make sense. The map = — z is injective, so we will identify = and x. The maps
fvar(t) and |¢| are also well defined on A, by Lemmas (1.12) and (1.8). Lemmas (1.3) and (1.5)
and (1.6) also remain true of the substitution on A. Moreover Lemma (1.5) can be improved
slightly:

Lemmar1.18:
Lett,s,ue€ Aand x +y € V. Assume that x ¢ fvar(u) then (§§/x)g/y = (tg/y)ﬁyy/x-

Proof . By Lemma (1.16), we can find «’ € u such that bvar(u) n (fvar(s) ufvar(u)) =@, s’ € s
such that bvar(s’) n fvar(u) = @ and ¢’ € t such that bvar(¢) n (fvar(s) u fvar(u) u {y}).
Then (%),)y, is the class of (t;,/x)u//y and (tﬂ/y)§wy/x is the class of (t;’/y)%//y/m (to be
complete, by Lemma (1.4), bvar(t;,/z) ¢ bvar(t") ubvar(s’), bvar(t;,/y) ¢ bvar(t') ubvar(u')
and fvar(s,,) < fvar(s)ufvar(u), sowe do have bvar(t;,/g:) ufvar(u') = @and bvar(t;,/y) N
fvar(s;, /y) = &). We can now conclude by Lemma (1.5). [

To conclude this section, let us prove this very reasonable lemma:

Lemma 1.19:

Lett e Aand x,y € V. Assume that y ¢ fvar(t), then \y L

=zt
Proof. We may assume that y ¢ bvar(¢). Thent,,, =t,/,

Art. Let z ¢ var(t)u{z,y}, by Lemma(rs), (ty/)./y = (tz/y)yz/y/w =t,/550 (ty/s)z/y Za ts)e
which concludes the proof.]

and we have to show that Ay, /, =a

2 [(-reduction

Definition 2.1 (3-reduction):
o Lett e A. Wesay that t is a redex if there exists x € V, wand v € A such that t = (A\z u)v.

o Let B={((A\zu)v,u

v/x

v/z) T €Viuandv e A}
We will write tSu instead of (t,u) € f3.

o Lett —p u be defined by induction on |t|:
IftButhent —p u;

Ift=(s)w, u=(v)wands »pv, thent »5 u;

Ift =(w)s, u=(w)vand s »g v, thent »p u;

- Ift=Xvs,u=X rvand s —»g v, thent -3 u.

o Lett —>E w hold if there exists k € N and (v;)o<i<k Such that v; =g v;,1, vy = tand v, = u.

2 [B-reduction

The relation ¢ -3 u means that we can obtain u from ¢ by reducing a redex somewhere in ¢.
The relation — is its reflexive and transitive closure.

Example 2.2:
L (Axa)t =gt

2. Let A = Az (x)z, then (A)t —5 (t)t, in particular (A)A -5 (A)A;

3. Let Q = Az ((x)x)x, then (Q)Q -5 (()Q)Q =5 (((VQ)Q)Q -4 -+ In fact let O
be defined by Q' = Q and QF*! = (F)€, then (2)2 »; Q* forall & > 0.

(Az2) y (y)y)(Az2) ww =5 Ay (y)y)(A\z2) ww
-5 ((Azz2)Aww)(Azz) \ww

-5 (Aww)(Azz)\ww
-5 (Azz) \ww
-5 Aww.

But we also have

(Az2)Ay (Y)y)(Az2) ww -5 ((Azz)Ay (y)y)\ww
-5 (Ay(y)y) ww
-5 (Aww)lww
-5 Aww.

»

Definition 2.3:
Let t € A, we define the set sub(t) of subterms of t by induction on (the length of) t:

« Ift =z, then subl(t) = {x};
* Ift = (u)v, then sub(t) = sub(u) Usub(v) u {t};
o Ift = Az, then sub(t) = sub(u) u {t}.

We say that t contains u if u € sub(t).

Definition 2.4 (Normal form):
o Atermt € A is normal if it does not contain any redexes.

o Atermt € A is normalizable if there exists a normal term t' such that t —5 t'.

« Atermt € A is strongly normalizable if there is no infinite sequence (t,);cn such that t, =t
andt; =g l;,;.

Note that a normal term ¢ cannot be reduced further: if ¢ —’E t' thent = t'. The converse is
false as AA only reduces to itself but is not in normal form.

The -reduction should really be conceived as a form of computation and normal forms are
the result of that computation. A strongly normalizable A-term is a computation that always
terminates no matter how we proceed with the computation (note that -reduction is a very

2 [B-reduction

concurrent form of computation, reductions can happen ’at the same time’ in distinct places
independently). A normalizable term is a computation that terminates if we are careful.
Note that a strongly normalizable term is in particular normalizable.

Example 2.5:

I. The terms Az x, Az y, A and 2 are normal.
2. The term (A)A is not normalizable, nor is (2).
3. The term (Ax y)(A)A is normalizable but not strongly normalizable.

Eventually we will try to isolate and describe certain classes of strongly normalizing \-terms,
but before we do that, we will try to formalize and prove the idea that the order in which we
reduce redexes does not matter:

Theorem 2.6 (Church-Rosser):

Let t, s, and s, € A. Assume that t —>E_} syandt 5 S, then there exists u € A such that
sy >puand sy >4 u

We say that — is confluent.

The idea of the proofis the following: first prove thatift -z s; andt —z s,, then there exists
w € A such that s; 5 U and s, -5 u (we say that — 3 is locally confluent) and then prove
that the theorem follows. The main problem of this proof is that in general locally confluent
relations may not have confluent transitive closure. What is true, however, is that a confluent
relation has a confluent transitive closure. But — 3 is not confluent. So we introduce another
reduction relation —, who is confluent and whose transitive closure is _’23~

Definition 2.7:
o Lett —, t' be defined by induction on (the length of) t:

- T, T

Ifu—,u andv -, v', then (u)v —, (u')v;
- Ifu—, v, then \zu —, Az u'.
- Itu—,u andv -, v, then (Azu)v -, %,/x.
o Lett — t' hold if there exists k € N and (u;)o<i<k, such that u; -3 u,, 1, vy = tand v, = w.

The intuitive meaning of t -, w is that a number of redexes occurring in t have been reduced
to obtain wu.

Lemma 2.8:
The relation — , is reflexive.

Proof . This is immediate by induction.]

Lemma 2.9:
l4 A l4 ! A
Letu,u',vandv' e A. Ifu », v’ and v -, v/, thengy/x = p Uyt

2 [B-reduction

Proof . We proceed by induction on u. If u =y € V, thenu' =y € V. If y # x, then Uyjp =Y =
Uyrjp- Wy = 2,0,

Ifu=MXyt, thenu' = Ayt and t -, t'. We may assume y # z. By induction ty

=0 = 0= Uy

x ~p by, and
hence Uyjo =)\yzy/x ~p)\yﬁ'yf/x = ﬂ&/x
If u = (t)s, then there are two possibilities. Let us first assume that v’ = (¢')s’, t -, t’
and s —, s'. Then, by induction gm —>p z'y,/x and Syl P §'y//x SO Uy/p = (zy/a:)éy/z ~p

! 4 — At

(L) = Uy
Otherwise u = (A\yt)s and u' = t_’§,/y where t », t"and s -, s’. We may assume y # z
and y ¢ fvar(v’). By induction, tyjz ~p _'y,/x and s,/, §’Q,/m SO Uy = (AYty/p)Su/z ~p
(;;,/x)éfl/ Iy = (t;,/y)yl/:p = g;,/x. The one before last equality follows from Lemma (1.18) as

y ¢ fvar(v').]

Lemma 2.10:]
Lett, s, and s, € A. Assume thatt —, s, and t —, s,, then there exists u € A such that s, -, u

and sy =, .

Proof . We proceed by induction on ¢. If t = z, then s, = s, = z and it suffices to take u = x.
Ift = Az v, then s; = Az w; and v -, w,. By induction there exists u such that v, -, u, for
i=1,2. Thens; = \vw; -, Ar u.

If t = (v)w, there are numerous cases to consider. First, s, = (g;)b; for i = 1,2 where v -, g,
and w —, b;. By induction, there exists ¢ and d such that a; -, cand b; -, d. Then s; =
(@;)b; —p (c)d.

Ift = (Arv)wands; = (Qz‘)bi/z fori = 1,2, where v -, a; and w -, b;. By induction, there
exists c and d such that a; », cand b; -, d. Then, by Lemma (2.9), s; = (Qz')bi/x ~p Cj
Finally, by symmetry, there only remains the case t = (Azv)w, 5; = (a;)p, . and s, =
(Az ay)b, where v —», a;, and w -, b;. By induction, there exist c and d such that a; -, cand
b; », d. We have 5, —», ¢, Iz by Lemma (2.9) and s, —, ¢, Iz by definition. [

Lemma 2.11:
Lett, s, and sy € A. Assume thatt — s, and L —, s,, then there exists u € A such that s; —, u

and sy =,

p U

Proof . By definition of t —7 s, there exists v; such that v; », v;,1,v5 = tand v, = 5. We
proceed by induction on £. If k£ = 0, then we can take u = s,.
Otherwise, by Lemma (2.10), there exists w such that v; -, w and s, -, w. So now we have

vy — 81 in k — 1 steps so, by induction, there exists u such that s, -, uand w -/ u and
*

hence sy -7 . [

Lemma 2.12:

Lett, s, and sy € A. Assumethatt —7 s, and t — s,, then there exists u € A such that s, —; u
and sq —

*

p U

Proof . By definition of t -7 s,, there exists v; such that v; », v;,;,v5 = tand v, = 5. We
proceed by induction on k. If k£ = 0, then we can take u = s,.

2 [B-reduction

*

Otherwise, by Lemma (2.11), there exists w such that v; —7 w and s; —, w. So now we have
vy —) 89 in k — 1 steps so, by induction, there exists u such that s, -, wand w -/ u and
hence s; -7 u. [

Lemma 2.13:
Lett,ue A Ift g u, thent -, u

Proof . We proceed by induction on t. If t5u, thent = (Ax s)vand u = Sy)5- By Lemma (2.8),
we have s -, s and v —, v.It follows that (Az s)v =, Sy/a-

Ift = Az s, then v = Ax v where s -3 v. By induction s —, v and hence Az s -, Az v.

The two remaining cases are t = (s)w and u = (v)w ort = (w)s and u = (w)v where s -3 v.
By induction, s -, v, by Lemma (2.8) w -, w and hence (s)w -, (v)w and (w)s -, (w)v.
[|

Lemma 2.14:
Lett,ue A Ift —, u, then;—%g.

Proof . We proceed by inductionon ¢. If t = x, thenu = rand = —>g . Ift = Az s, thenu = Azv
and s -, v. By induction s 5 v and hencet = Az s —>E Az v = u (this follows immediately
from the fact thatif v; =g v;,, then Az v, =5 Az v, ;).

Ift = (s)vand u = (a)b where s -, a and v -, b, by induction, s —>2, a and v _’E b, so
(s)v =4 (a)u —4 (a)b (these two statement follow from the fact that if v; >4 v,,,, then
(v;)v =g (v;,q)vand (a)v; —g (@)v;.4)-

The only remaining case ist = (Ax s)v and u = . where s -, a and v -, b. By induction,
s —>[*3 aand v —>E b, and hence (Az s)v —>E (Axa)v —>/[*_j (Aza)b—g [y [

Corollary 2.15:
Lett,ue A Ift —>Z> uifand only if t >} u.

Proof . This follows immediately from Lemmas (2.13) and (2.14). [

Proof (Theorem (2.6)). This is immediate by Lemma (2.12) and Corollary (2.15). [

Definition 2.16 (3-conversion):
We say that t and u € A are [3-equivalent (and we write t =g w) if there exists v € A such that

t—>svandu—~jv.

Proposition 2.17:
The relation =g is an equivalence relation.

Proof . Reflexivity and symmetry is evident. Let us prove transitivity. Let ¢, s, u € A be such
that t =3 s =3 u. By definition there exists v and w € A such that ¢ _’E v, 8 —>E v, 8 —>;3 w and
u —>[§ w. By Theorem (2.6), there exists a € A such that v —>E a and w ~5a,501 —>[§ a and
u—;aand hence t =g u. [

Remark 2.18:
Note that if v is normal and ¢ =3 u, then ¢t -} u. It follows that if both ¢ and « are normal

and (-equivalent they are equal. Normalizable terms are exactly those whose 3-equivalence

10

3 Simply typed \-calculus

class contains one (and only one) normal form.

3 Simply typed \-calculus

We wish to characterize a subset of A that only contains strongly normalizable terms

Let us have a look at one pathological examples: (A)A where A = Az (z)x. The reason this
term is problematic is because x is applied to itself. If we follow our intuition that A-terms
are functions then X is both a element in a set A and a function in A® for some set B and
that should not be possible. To prevent (A)A from being an admissible term, we are going to
prevent A from appearing altogether (although A alone is strongly normalizable) by forcing
terms to have types, that is only consider terms that have a well defined “domain” and “image”.

Definition 3.1 (Type):
Let W be a set (disjoint from V' the set of variables). The set T of types is the smallest set of words
on W u{(,),—} (where the union is supposed to be disjoint) such that:

e WCT;
e If Aand B € T, then (A - B) € T.
The elements of W are called the type variables or the basic types.

Definition 3.2 (Context):
A context is a set T of pairs (x : A) where x € V and A € T such that if (x : A) and (x : B) €T,

then A = B.

A context is therefore a partial function from V to 7.

Definition 3.3:
Let T be a context, A € T and t € A. We define I + t : A to be the smallest relation such that:

e IfreV,thenT u{x: A} +x: A;
e Ifx €V does not appearinT" and T’ U {x: A} +t: Bthen'+ \zt: A - B;

e IfTy+t:A—> BandTls+u: AthenT'1 UTy + (t)u : B (provided I'y U T is indeed a
context).

IfI' -t : A, we say that ¢ has type A in the context I'. As before, we will call a witness that a
typing statement holds a typing derivation. We can also write those using inference rules:

(Ax)

FTu{r:A}rz:A

I'iw-t:A—- B Toru:A
rMulyor (Hu:B

Fu{r:A}+1:B

(1) ' xt:A- B (=)

II

3 Simply typed \-calculus

Note that, depending on the form of ¢, only one rule applies. So looking at ¢ one can predict
what was the last rule applied in a typing derivation of ¢.

If we only keep the types (and hence only look at what is in black), we recognize a fragment
of the deduction rules for propositional logic. This analogy is called the Curry-Howard cor-
respondence. Here is a table that summarizes the aspects of the analogy that will be relevant
to us:

A-calculus Logic
Types Formulas
Typing statements Deductions
Typing derivations | Deduction derivations
B-reduction Proof simplification
Normal \-terms Normal proofs

Note that removing the terms is a completely harmless thing to do. Given a deduction deriva-
tion, we can reconstruct a (unique) A\-term whose typing derivation would correspond to the
deduction derivation we started from.

Let us now give some examples:

This is both a typing derivation for the identity A\-term and a proof of reflexivity of —.

(Ax) (Ax)

r:A->Bry:A->B z:Arz: A
y:B->Cry:B->C {r:A>B,z: A} (2)2: B
(=) {r:A->B,y:B->C,z: A} + (y)(z)z: C
(1) {r:A->B,y:B->C}+ Az (y)(x)z: A->C
(_))I x:A->Br Xy z(y)(z)z: (B->C)—> (A->0C)
R aaAz (1) (2)2: (A B) ~ (B~ C) » (A~ C))

(Ax)

This is a derivation of the transitivity of —.

An obvious consequence of the fact that the typing rules correspond to deduction rules for
propositional logic is that 7" can be seen as a subset of the set of propositional variables
with variables in W and that if - ¢ : ¢ then = ¢, i.e. @ is a tautology. However, the con-
verse is not true even if we consider only formulas containing the connective —. In fact,
the Curry-Howard correspondence relates A-calculus and intuitionistic logic (in the case of
simply typed A-calculus, the implicative fragment of intuitionistic logic).

Lemma 3.4:
Let T c T be contexts,t e N\and Ae T. If T+t : A, thenT' +t: A.

Proof . We proceed by induction on ¢. If t = z then the last rule applied must be (Ax), so
x:Ael cI'so,applying (Ax), IV +z: A.

I2

3 Simply typed \-calculus

If t = (u)v, then the last applied ruled must be (- g) so there exists C' € T and contexts I'
and g suchthat ' =Ty Ul Ty —u:C > Aand ' + v : C. By induction I + u: C - A
and I'" + v : C and, applying (—g), we have I + (u)v : A.

Finally, if t = Az u (we may assume z ¢ I"), then the last applied rule must be (—;) and
there exists C, D € T suchthat A = C - DandT'u{z : C} + u : D. By induction
IMu{z:C}+u: D and, applying (=), I" + Azu:C - D.]

Lemma3.5:
Lett,ue A, T"beacontext, A, Be Tand x € V. AssumethatU' u{z: B} +t: AandT' + u: B,
thenT'+-t,, : A.

Proof . We proceed by induction on ¢. If ¢t = x, then because I' U {x : B} + t : A, we must
have A = B. Ast,/, = u,wehave ' - 1,/, : A. If t =y # z, thent,/, =t = y and we have
Fu{z:B}ry:Assoy: Aelandl' +t,,: A

If t = (s)v, then the last rule applied was (—g) and there exists C' € T" and contexts I'; and
Iy suchthatTy uTy =Tu{x: B}, T1+s:C —> AandI'1 + v : C. By Lemma (3.4), we can
assume that I'y = 'y = I'u {z : B}. By induction, I' - s/, : C' > Aand I" + v, : C. So
applying the rule (-), we get that I' = (s,,/;)vy/y : Aand, ast,j, = (Sy/z)Vu/z, We are done.
If ¢t = Ay s (we may assume that y # x), then the last rule applied was (—=),s0 A =C - D
andT'u{z:B,y:C}+ s:D. Byinduction'u {y : C} + s,, : D and applying rule (=),
['+ Ay sy, : C = D and that concludes the proof as t,,/, = Ay s/, [

Proposition 3.6:
Lett,u e A, ' beacontext and A € T. Let us assume that ' - t: Aandt —g u, thenT' - u : A.

Proof . We proceed by induction on ¢. If t3u, then t = (Az s)v and u = s,,, (Where we might
assume that x is not free in u). The end of the derivation of I" - (Ax s)v : A must look like:

Mu{z:B}rs:A :
I'NrXzs:B—- A I'hy+-v:B
FlUFQI—()\St)U:A

(=1)

(=r)

Where I =I'; uI'y and B is some type. By Lemma (3.4), we can assume that I'; =I's = I". By
Lemma (3.5), we have that I' - s,/ : A.

Ift = (s)w,u=(v)wand s -3 v,wemusthaveI' - s: C' - Aforsometype CandI' - w: C.
By inductionI' v : C' - Aand hence I' + (v)w : A.

Ift = (w)s,u=(w)vand s -3 v,wemusthaveI' - w : C' - Aforsometype C'andI'+ s: C.
By inductionI" + v : C'and hence I' + (w)v : A.

Finally, if t = Az s, u = Az v and s —g v, we must have A = C' — D for some types C' and D
andT'u{z:C}+ s:D.ByinductionT u{z:C}+v:Dandhence'+ Azv:C > D. =

Note that if you prove B under some hypothesis I'y and B — A under some hypothesis
I’y then Modus Ponens (or (—g)) tells you that you can prove A assuming I'; and I';. But
another proof of A (in some sense more straightforward), would be to look at the proof of
B — A and each time you use the hypothesis B replace that by the proof of B. This is

3

3 Simply typed \-calculus

exactly the transformation on proofs associated to -reduction. Strong normalizability of
the term whose typing derivation corresponds to some deduction derivation implies that
this “simplification” algorithm terminates.

Corollary3.7:
Lett,ue A T beacontextand A €T. Let us assume thatT' —t: Aand t _’Z% u, then +—u: A

Proof . This is an immediate by Proposition (3.6) and induction on the number of steps re-
quired to reduce ¢ into u.]

We now want to prove the following:

Theorem 3.8:
Lett e A, T beacontextand A € T. IfT" + t : A then t is strongly normalizable.

The proof is rather convoluted and involves interpreting types as set of (strongly normaliz-
able) terms that contain all the terms that can be given this particular type. Let N be the set
of all strongly normalizing terms.

Definition 3.9:
Let | A| be defined by induction on A:

« fX W, |X|=N;
e |[A—> B|={teA:forallucl|Al| (t)ue|Bl}.

We now want to show that for all type A, |A| € N and forall ¢t € A,if ' + ¢ : Athent € |A].
But that will require setting up some tools.

Definition 3.10:
Let S ¢ A. We say that S is saturated if for all x € V, t; and w € A and all t € N, if

(- ((uggz)tr) ..)tn € Sthen (... ((A\zu)t)ty ...)ty € S.

The intuition behind saturation is that S is saturated if is closed backwards under the relation
— g (at least under certain specific 3-expansions).

Lemma 3.11:

If S1 ¢ A is saturated, then for all So € A, Sy — Sy = {t € A : forallue Sy, (t)ueS1}is
saturated.

Proof.Lett € N, t;, u € Aand = € V such that (... ((ugz)t1) ..)t € Sz — S1. By defini-
tion, for all 41 € S2, ((-.. ((uy/z)t1) .-)tn)tns1 € S1. Since Sy is saturated, we also have
(.. (((Axw)t)ty) ..)tn)tne1 € Sy It follows that (... ((Axu)t)ty)..)t, €S2 = S;. =

Lemma3.12:
Let Sy, S1, So and S c A. If S| € Sy and Sy ¢ S} then Sq - Sy € S] — S

Proof .Pick t € S1 - Sy and u € S| ¢ Sy. By definition (¢)u € Sy € S and hence t € S] — S5.
u

14

3 Simply typed \-calculus

Lemma3.13:
N is saturated.

Proof . Let us begin with the following claim:

Claim3.14: Lett € N. The set red(t) = {u:t >} u} is finite.

Proof . Assume it is not. Let us construct by induction a sequence v; such that vy = ¢, red(v;)
is infinite and v; —3 v; contradicting the strong normalizability of ¢. Let us assume that v;
has been built. We have red(v;) = Uy, ;, red(u) and there are only finitely many u such that
v; =3 u as there are only finitely many redexes in v;. So, if red(v;) is infinite, there exists u
such that v; -3 u and red(u) is finite. Take v;41 = w. ¢

Lett e N, t;, ue Aand z € V such that s = (... ((u/;)t1) .. .)tn € N, we have to prove that
v=(..(((A\zxu)t)ty)...)t, € N. We proceed by induction on (|red(t)|,|red(s)|) ordered
lexicographically.

To prove that v € AV it suffices to prove that for v" such that v -3 v, v € N. Let us consider
what are the possible 3-reduct of v:

o First of all we could have v’ = s which is by hypothesis in \V.

+ Second, we could have u —»5 v"and v" = (... (((Azu')t)t1)...)t,. By Lemma (2.13), we
have u -, v’ and by Lemma (2.9), u;/, —, ul’t/x, so by Lemma (2.14), s/, ug/x. It
follows that s % (... ((u;/x)tl) ...ty = §' (in particular s’ € V). We have s’ € red(s)
sored(s’) € red(s), but s ¢ red(s”) (that would contradict the strong normalizability
of s), so [red(s")| < cardred(s). 1t follows by induction that v’ € N.

o There exists t; € A such that v’ = (... ((...(((Azu)t)t1)...)t;)...)t,. Thens -3
(o (o (Qugga)tn) - DE) -)t = 87, [red(s")| < [red(s)| and by induction v’ € NV.

o There exists t' € A such that v’ = (... (((Azw)t")t1)...)t, € N. By Lemma (2.13), we
have t —, t" and by Lemma (2.9), 1/, —, Uy, S0 by Lemma (2.14), uy/, > Uprje- It
follows that s =7 (... ((uy/p)t1) ...)tn = . In particular s” € N. Moreover [red(t)] <
[red(¢")| and by induction (on ¢’ and s’), we have that v’ € V.

That concludes the proof.]
Let \j be the set of terms of the form (... ((z)t1)...)t, where x € V and t; e N.

Lemma3.15:
We have:

e NoSN;

o« No N - Npy;

e Np >N cN.
Proof .

5

3 Simply typed \-calculus

o Letu = (...((x)t1)...)t, € No. We proceed by induction on ¥; [red(t;)|. Let u’ € A
be such that u -3 u'. Then there exists ¢; such that v’ = (... ((... (()t1)...)t)) ..)ty
and t; > t;. Then [red(t])| < [red(¢;)| and hence v’ € N by induction. We have proved
that every -reduct of u is strongly normalizable so u € V.

e Pickany u = (...((z)t1)...)t, € Np and t,+1 € N. Then, by definition, (u)t,+1 =
((..((x)t1) ..)tn)tne1 € Np. 1t follows that u € N — Nj.

« Pick any u € Ny — N. By definition, x € N and (u)z € N/. We proceed by induction
on |red((u)x)|. Let u’ € A be such that u - v/, then (u)zr —g (u')z and hence
[red((u)x)| < [red((u)z)|. By induction u’ € V' and hence u € N.

That concludes the proof.]

Lemma 3.16:
Let A € T. We have:

o |A| is saturated;
e Noc|AlSN.

Proof . We proceed by induction on A. If A € W, then |A| = N is saturated by Lemma (3.13)
and Ny ¢ |A| ¢ NV, by Lemma (3.15).

If A= B — C, then |A| = |B| — |C| and |C| is saturated by induction. Hence, so is | 4|, by
Lemma (3.11). Moreover N ¢ |B| and |C| ¢ N by induction so |B| - |C| ¢ Ny - N € N by
Lemmas Lemma (3.12) and Lemma (3.15). Similarly, Ny ¢ |C|and |B| € N so Ny € N - A
[b] > |C. u

Lemma3.17:
Lett,u; e A,T' = {(z;: A;) : 0 <i<n} beacontext and A € T. Assume that x; ¢ U;.; fvar(t;),
I'~t:Aandu; € |Az|; then s = (.. (tu1/$1) .. .)tn/Jjn € |A|

The hypothesis x; ¢ U;.; fvar(t;) isjust there to insure that the substitution is a simultaneous
one (like we defined for propositional/predicate logic).

Proof . We proceed by inductionon t. If t = z, thenI' - x : Aso x = z; for some i, A = A; and
s = t; € |A;| (this can be seen easily by induction on n and it is where the hypothesis on z; is
used).

If t = Az v, we may assume that © + z; and = ¢ fvar(¢;) for all .. Moreover, we must have
A=C-DandT'u{z:C}+wv:D.Picku e |C|. Byinduction ((...(vy,/z,) -)up/zn)ujz €
cardC. Let w = (... (Vy, /z,) -+ - Jup jon- Because |C| is saturated (see Lemma (3.16)), we have
s=(Azw)uel|C|

Finally, if ¢ = (v)w, then there is some C' € T'suchthat' - v : C > Aand T + w : C.
By induction v" = (... (vy,/z,) -+)tnfan € 1C = Aland w' = (... (wy,/z,) - -)10 /2. |Cl, 50 by
definition of |C' - A|, s = (v")w' € |A]. |

Proof . (Theorem (3.8)) Let I = {(z; : 4;) : 0 < i < n}. By Lemma (3.16), x; € Ny < |A4;| and
hence, by Lemma (3.17), ¢ = (... ()4, /21 - -)ap/an € Al € N (the last inclusion is proved in
Lemma (3.16)). []

16

3 Simply typed \-calculus

As discussed earlier, the logic we get by only allowing the rule (Ax), (=) and (-) is weaker
than propositional logic even if we restrict to those formulas that only contain —. We can
now make that remark formal. We can now prove that there are no A-term whose type is
((A—- B) - A) - A although that last formula is a tautology (often called Pierce’s law).

Lemma 3.18:
Let t be a normal \-term. Then there exists variables x and x; and normal terms u; such that

t=Ar1- Mg (- (()ur) ..)up.

Proof . We proceed by induction on ¢. If ¢ = = then ¢ is of the right form. If ¢ = A\zys then by
induction s = A1 - Az (... ((®)u1) ..)u, and t = AzoAzy - Az (... ((z)ur) .. .)uy is of the
right form. 1f ¢ = (s)v, then s and v are normal and s cannot be of the form lambdax w or else
t would be aredex. By induction s = (... ((z)u1)...)upandhencet = ((... ((x)u1)...)up)v
which is of the right form.]

Lemma3.19:
Lette A, AeT, z eV andT bea context. IfT' + t : A and x € fvar(t) then there is some C € T
such that (x: C) eI

Proof . We proceed by induction on ¢. If t = z, the only applicable rule is (Ax) and hence
(z:A)el.1ft = \y s, we may assume thaty # z, A= C - Dandwehave'u{y : C'} + s: D.
We have z € fvar(t) = fvar(s) \ {y} and hence by induction there is some E € T such that
(r: E) e Tu{y: C}. But because x # y, we must have (z : E) € I'. 1If t = (u)v, then
'u:C - AforsomeC eT andI'+v: C. As x € fvar(t) = fvar(u) u fvar(v), must be
free in either u or v and by induction there is some E € T such that (x: E') € T.]

Proposition 3.20:
Let A, B € T. There is no \-term whose type is ((A - B) - A) — A in the empty context.

Proof . Assume such a t € A exists. By Theorem (3.8), t is strongly normalizable. Let u be the
(unique) normal form of ¢ By Proposition (3.6), we also have - v : ((A - B) - A) - A.
So we may assume that ¢t = w is normal. By Lemma (3.18), t = Az - Az (... ((x)u1) ...)un
for some z and z; € V and u; € . Because the only applicable typing rule is (1), we see
that the type of ¢ has to be of the form A; - (As... > (A, > A1) ...) where A; € T and
hencek =0or1. If k =0,¢ = (...((x)u1)...)un and z is free in ¢. But, by Lemma (3.19), ¢
cannot be typed in the empty context. So we must have k = 1, ¢ = Az(... ((x)u1)...)u, (by
Lemma (3.19), the variable must be bound in ¢, so it must be 1) and x : (A - B) > A +
(...((x)u1)...)u, : A. The only applicable rule is (—) and hence there exists C; € T' such
thatz: (A—->B) > Arwu;:Ciandz: (A->B) > ArCy - (Co > ... (Cp, > A)...). It
follows that (A > B) > A=C; - (Ca —...(C,, > A)...)andson=1and C; = A - B.

We have obtained so far that there exists u € A" such thatz: (A > B) > A+ u: A - B.
By Lemma (3.18), t = Ay - Ayg (... ((y)v1)...)v, for some y and y; € V and v; € N. As
before k = O or 1. If k£ = 0, then y = x and we must have z : (A - B) - A+ D; -
(Dy...—> (D, » (A— B))...)forsome D; € T'and thus (A - B) > A=D; - (Dy... >
(D, - (A — B))...). But that is impossible. It follows that ¥ = 1 and we must have
{r:(A->B)-> Ay : A} + (...((y)v1)...)v, : Bwherey =z or y; and hence {z : (A >

17

4 Enriched \-calculi

B) > Ay : Ay +~y: Dy - (Dy... > (D, — B)...). This is not possible if y = 2 nor if
y = y1 so this is a contradiction. [

Note that the “simplification” for proofs played a fundamental role in this argument.

4 Enriched)\-calculi

The fact that we end up with a weaker logic could come from the fact that we can only treat
the connective —. One natural solution to this problem could be to enrich our A-calculus
and/or our type system to obtain a Curry-Howard correspondence with a larger fragment of
propositional logic. 1 will outline four different possible enrichments one might want to con-
sider. There are many more and some even allow for example to also obtain a Curry-Howard
correspondence with fragments of predicate logic or higher order logic (we will consider one
of those at the end).

4.1 Intersection types

One first thing we could do is add an intersection to our types:

Definition 4.1 (Intersection types):
Let W be a set (disjoint from V' the set of variables). The set T'p of intersection types is the smallest
set of words on W u {(,), >, A} (where the union is supposed to be disjoint) such that:

e W cTp;
e If Aand B € Tp, then (A - B) and (A A B) € Tp.

We keep the old typing rules:

(Ax) FTu{r:A}rpux:A

Fu{z:A}rpt:B I'y+pt:A- B Forpu:A

(—>I) I'p\2t:A—- B (—)E) I'iul's +p (/,)UZB
And we add three new rules:

I'ipt: A I'orbpt:B I'pt:AAB I'pt:AAB
(M) = UTyrp 7 AnB o) —wpra - R TR

Most of the result we proved for simply typed A-calculus still hold (with very similar proofs):

Proposition 4.2:
Let t, w € A, " be a context and A € Tp. Let us assume that T’ +p t : Aand ¢ —>,g, u, then
I FEpu: A.

Theorem 4.3:
Lett e A, T bea contextand A € Tp. If T +p t : A then t is strongly normalizable.

18

4 Enriched \-calculi

Remember that our initial goal when introducing types was to characterize certain classes
of strongly normalizing terms. To do that we had to get rid of (A)A = (A (z)z)A (z)x and
when we introduced simple types, we got rid of A (z)x although this term is perfectly fine,
being normal. Intersection types do not suffer from this flaw:

A A A B rpiAn(AoB) M o Ar(AS B rp2An (A5 B)
(/\EER))x:A/\(AeB)I—Da::AeB (npL) r:AN(A->B)rpa: A
—FE

x:AAN(A—-> B)+p (2)z: B
Fp Az (z)x: (AA(A— B)) > B

(=1)

In fact, we can prove that we got rid of this flaw altogether:

Theorem 4.4:
Lett € A, I" be a context and A € T'p. The following are equivalent:

(l) FI—DtZA;

(ii) tis strongly normalizable.

We can also show that Pierce’s law is the D-type of no A-term and hence that it cannot be
derived using only (Ax), (=1), (=E), (A1), (AEL) and (AgR).

4.2 Intuitionistic propositional logic

Intersection types completely solve the problem of characterizing strongly normal terms.
Nevertheless from a logical perspective, they are not completely satisfying as the D-types
represent a rather small fragment of all propositional formulas. One way to obtain a type
system whose types are exactly the formulas of propositional logic is the following (but it
requires changing the A terms and the notion of reduction):

Definition 4.5:
Let V' be a (countable) set of variables and A =V u {(,),\,(,),;,m1,m2,C,|,i1,i2,V}. The set
Lz is the smallest set of words on A such that:

e V<l

Ift and u € Lz, then (t)u and (t;u) € Lz;

e IfreVandte Lz, then \xt € L7.

o Ift € Lz, then mt, mot, i1t, iot and Vt € Lz;
e Ift, u, v € Lz then Ct(ulv) € L7.

As for the terms in L, we can define a notion of a-conversion and we define Az = L/ =,,.
The construction (t;u) € Lz corresponds to pairs, w1t and 7ot to the two projections. The
other construction are somewhat more complex to describe but, for what it is worth, Vi

19

4 Enriched \-calculi

corresponds to an error being raised by the program and Ct(u|v) corresponds to a pattern
matching on ¢ and i; and i3 are the two constructors for the pattern matching. This might
become clearer once we have the reduction rules:

(771 7T1< > —x s
(G
(C2

(V) (Vt)u -y Vt.

)
)

(m2) mo(tiu) —r u;
) Cirt(ulv) —c (u)t;
)

Cist(ulv) —¢ (v)t;

We define a notion of reduction ¢ -7 u by allowing any of the above reductions to happen
anywhere in ¢:

Definition 4.6:
Let t and u € Az. We define t -7 u by induction on t:

o Ift s5quwhereoe{f3,7,C,V}, thent -1 u;

o Ift >z uthenforzeV,s,veArandOe {my, m,i1,i2, V}, \xt >7 Az, (t)s >7 (u)s,
(s)t =z (s)u, (t;s) = (u;s), (s;t) = (s;u), Ot > Oy, Ct(s|v) -1 Cu(slv), Cs(tjv) -z
Cs(u|v) and Cu(s|t) =1 Cv(s|u).

Definition 4.7:
Let W be a set (disjoint from V' the set of variables). The set Tt is the smallest set of words on
W u{(,),—,A,V, L} (Where the union is supposed to be disjoint) such that:

o W Ty,
e 1Ty
e If Aand B € T, then (A - B) (AAB)and (Av B) € T7.

And we consider the following typing rules:

(Ax) NPu{z:A}rza:A

Nu{r:A}+zt:B I'i+~7t:A- B ITorzu:A
(=1) — (—=E) ,
'z \zt:A—- B Fluf‘gl—z(/)ll.B

izt A I's+-7u:B (A)FI—If:A/\B (AER) ' AAB
DyuTly 7 (u):AAB EL) " Thvzmit: A ER) Tz myt:B

(A1)

Fl—IfIA (V) FI—IfZB
Crrit:AvB IR) st AV B

(vir)

20

4 Enriched \-calculi

I'rru:A-C I's+-70v:B->C I'stz1:AvB
I'Mul'yul'y I—IC/(U‘(‘):C

(VE)

Izt:1
2 ey

If we define—-Aas A - 1and A < Bas (A - B)A(B — A) thenitisvery easy to see that we
can derive every deduction rule from propositional logic except for (ExMid) (and this rule is
not only hard to derive, it is in fact impossible to derive as we will see later on). Note that in
this setting, it is more natural to have | as a primitive and to define - using - and 1.

As previously we can prove the following':

Proposition 4.8:
Let t, uw € Az, I" be a context and A € T7. Let us assume that I' +z t : Aand t -7 u, then
'z u: A

Theorem 4.9:
Lett € Az, I' be a contextand A € T1. If T +1 t : A then t is strongly normalizable (for —1).

By a (rather horrible) discussion on the form of normal terms one can prove the following
statement which is symptomatic of intuitionistic logic (and which explains why this logic is
also referred to as constructive logic):

Proposition 4.10:
Let A1, Ay € Trandt € Az. Assume that 1 t : A1 Vv A and t is normal. Then there exists uw € Az
and j € {1,2} such that t = iju and +7 u : A; holds.

Corollary 4.11:
There is no t € Az whose type in the empty contextis Av (A — 1).

If we call intuitionistic logic the logic whose rules are the term-free version of 7, then we have
just proved that Av—-A is atautology of classical logic that does not hold in intuitionistic logic.
What we can prove in intuitionistic logic is that Pierce’s law is equivalent to the excluded
middle and hence Pierce’s law does not hold either in intuitionistic logic.

4.3 Classical propositional logic

If we want to recover full classical logic we just need to add that a rule that says that A can
be deduced from --A.

As the system of connectives {—, L} is complete, to keep things minimal, we will only con-
sider those two basic type constructions and define the rest of the connectives using them.

Definition 4.12:
Let V' be a (countable) set of variables and A =V u{(,), \,E}. The set Lp is the smallest set of

words on A such that:

'The proofs are essentially variations on the previous proofs. They become more annoying to write as there are
many more cases.

21

4 Enriched \-calculi

e VCLp;

Ift and u € Lp, then (t)u € Lp;
e IfxeVandte Lp, then Axt e Lp.
o Ifte Lp,thenEt e Lp;

As for the terms in L, we can define a notion of a-conversion and we define Ap = Lp/ =,.
The construction £t corresponds to what is called a continuation operator. The reduction
rule associated to £ has a computational meaning but it is somewhat complicated to explain.
We consider the following reduction rules:

(B) (Azt)u—p tyys;

() Az () —y tif o ¢ fvar(t);

(&) (E)u—g EAf(L)Ag (f)(g)uwhere f,g ¢ fvar(t) U fvar(u);
(En) ENF (F)t »gn tif f ¢ frax(t).

In fact, we could have introduced the n-reduction rule from the beginning. It corresponds
to some natural simplification of proof but it is not really useful and does make things a little
more complicated. However, in AE-calculus, products and sums do not work as well if we
don’t add this new rule and the corresponding rule associated with £.

We define a notion of reduction ¢t —p u by allowing any of the above reductions to happen
anywhere in ¢:

Definition 4.13:
Let t and u € Ap. We define t —p u by induction on t:

o Ift >qguwhereoe{8,n,E,En}, thent >p u;

e Ift >p uthenforxz e V,and s € Ap \xt »p Azu, (t)s =p (u)s, (s)t »p (s)uand
Et —>Pp Eu.

Definition 4.14:
Let W be a set (disjoint from V' the set of variables). The set Tp is the smallest set of words on
W u{(,),—, L} (Where the union is supposed to be disjoint) such that:

e W CTp;

e LeTp

. IanndB € Tp, then (A—> B) e Tp.

And we consider the following typing rules:

(Ax) Fu{e:A}ruz:A

22

4 Enriched \-calculi

Fu{zr:A}+1:B

I'y~t:A- B Toru:A
(=r1) .
I')et:A- B

(_>E) Fluf‘gr—(/)u:B

Driin Fefid>1=1
(J_)F'_VZL:A (_'_'E) &L A

As previously we can prove the following:

Proposition 4.15:
Let t, uw € Ap, I" be a context and A € Tp. Let us assume that I' ~p t : Aand t -7 u, then
I'rpu: A

Theorem 4.16:
Lett e Ap, " bea contextand A € Tp. If ' +p t : Athen t is strongly normalizable (for —p).

If we want to recover all of propositional logic, we should redefine all the other connectives
and their associated constructors. As previously, we define -A as A — 1. Also, although
we do have 1 as logical connective/type constructor, we are missing the constructor Vu that
transforms a proof of 1 into a proof of any type A. Let Vu = EAz u for some x ¢ fvar(u). Let
us check that this term is typed the right way, i.e. if I' -p u : 1 for some context I', then we
should have I" +p Vu : A forany A € Tp:

FTu{z:A-> 1}rpu:l
TrpAzu:(A—>1)—>1
(==r) Frp&Xzu:A

where the first line comes from weakening the context (we proved this result for simply type
A-calculus, but it also holds here).
Let us also check that this term reduces in the intented way:

(Vu)v = (EXzu)v

—e EAf(Azu)Ag (f)(g)u
-5 EMNfuzq Aru=vVu.

Let us now take care of the conjonction. Let AAB = (A —» (B - 1)) = L, (t;u) = Af ((f)t)u,
mit = ENf () Az Ay (f)z and mot = ENf (t)AxAy (f)y. Let us check that we get the right
typing rules. Assumong I'y +p t: Aand I's p w : B hold, then:

(Ax) fiA>(B->1)+pf:A>(B->1) F1I—7;t:A

T G{f:A> (B0t rp (/)l:Bo1 Ty rpu: B
(=1) Lol u{f:A=>(B->1)}rp ((Hu:L
D 0T rp M (u: (A> (B> 1)) > 1=AAB

Now assume that I'—¢: AAB=(A— (B — 1)) — L holds. We have:

23

4 Enriched \-calculi

(Ax) fiA>1lrpf:A—>1 (4) {r:Ay:Birpa:A
(=) TU{/iA> Lo Ay Blrp (Nl
(1) Fu{f:A->1Lz:A}rpAy(f)z:B—>1
(1) Tu{f:A-1}rplzdy(f)z:A— (B - 1)
and:
()I‘|_Pt:(A—>‘(B—>J_))—>J_ FU{f:A—>J_}I—P)\.’E)\y(f)x:Ae(Bel)
->F

Tu{f:A->1}rp () xXy(f)x: 1L
Crp Af(D)Axdy(flz:(A—>1)—> 1L
Crp ENf (DN y (flz: A

(=1)

The term 7ot is typed in a similar way.
Let us now check that we have the right reduction:

mtiu) = EAF(AL((D)u)rzdy (f)x
=5 EXf((AzAy (f)z)t)u
=5 EAf(Ay (f)t)u
—g EM ()t

=gy L

We have the symmetric reduction for mo(¢; u).
Conjonctions can also be recovered. Define AvB = (A - 1) > ((B —> 1) > 1), i1t =
AfAG (f)E, iat = AfAg(g)t and Ct(ulv) = EAR((t)Aa (h)(u)a)Ab(h)(v)b. We can check
again that all these terms are typed correctly. Let us just show that we have the right reduc-
tion:
Cit(ulv) = EX((AfAg(f)t)Aa(h)(u)a) b(h)(v)b

-5 EX(Ag (Aa(h)(w)a)t)Ab(h)(v)b

-5 EXh(Aa(h)(u)a)t

-5 EM(h)(u)t

—en (u)t.

One last remark, the excluded middle is valid in classical propositional logic and so some AE-
term should have type Av-A=(A—-> 1) > (((A—> 1) > 1) - 1). Theterm \fAg(g)f is
such a term and here is a derivation proving it:

(Ax)

(Ax)

g:(A>1)>1rpg:(A>1)—>1

(=1)
(=1)

ftA>1lrpg:A—>1
{f:A->1g:(A>1)>1p(g)f:1L
fiA->1rpAg(9)f: (A= 1) > 1)~ 1

Fp AfAG(9)f: (A= 1) > (((A—>1)—>1)~>1)

24

4 Enriched \-calculi

4.4 System F

The last possible approach that will be discussed here is rather orthogonal to the two previ-
ous ones. Instead of enriching our A-calculus with new construction to allow for new type
construction, we will (as we did with intersection types) simply enrich the typing system and
hence the corresponding logic. The main difference with intersection types is that the en-
richment that we will consider now will correspond to an enrichement of propositional logic
that we have not considered so far: quantification over propositional variables (often referred
two as second order logic). From a programming language perspective it corresponds to type
polymorphism.

First we need to define the types of system F.

Definition 4.17:
Let W be a set (disjoint from V' the set of variables). The set T is the smallest set of words on
W u{(,),—, Y} (wWhere the union is supposed to be disjoint) such that:

e WcTyg
e If Aand B € T'r, then (A - B) € Tr.
e If XeWand sAeTr, thenVX AeTg.

As for terms, we can define a notion of a-conversion on types (also denoted =,,), and we define
T7 = Tr[=a. We can also define a notion of substitution on 7 that we will denote by Ap/x.
IfT" = {(x; : A;) : i € I} is a context, we denote by fvar(I") the set U;.; fvar(A4;).

We keep the old typing rules:

(Ax)

NTu{r:A}rra:A

FU{.I‘IA}I—]:fIB Fll—]:fiA—>B FQ"}'U:A

DT A B (~5) Tiulsrz (H)u:B

And we add two new rules:
) TreFt: A X ¢ fvar(D) (V) Trrt:VX A
I L. Ft:VX A P Trrt:Apx

Although the proof become more complicated (especially the proof of Theorem (4.19)), we
can prove the following:

Proposition 4.18:
Lett, u € A, I" be a context and A € Tx. Let us assume that I’ ~x t : Aand t -3 wu, then
r Fru: A

Theorem 4.19:
Lett e A, T be a context and A € Tr. IfI' =5 t : A then t is strongly normalizable (for —).

We can also encode 1, A and Vv in system F. The encodings are quite similar to those in
AE-calculus, but the underlying A-terms are somewhat more reasonnable.
We define | = VX X. Assuming that I' - ¢ : 1 = VX X, we have:

25

4 Enriched \-calculi

Trrt:VX X
(VE) FI—]:tZA

We define AAB =YX (A— (B - X)) - X (whereXisfreein Aand B), (t;u) = Vf (f(t))u,
mt = (t)Aarba and mt = (t)AaAbb. Let us check that these terms have the right type.
AssumethatTi ~rt: Aand o Fru:t

(Ax)

fiA-(B->X)rgf:A->(B->X) F]_l—]-:‘t:A :
Flu{fAe(BeX)}l—y:(f)tB%X I'orru:B
(—)[) F1UF2U{fA—>(B—>X)} I—]:((f)t)u:X

(V) Flqul—f)\f((f)t)u(A—>(B—>X))—>X X¢F1UF2
E Tiuls rr M (F)u: VX (A> (B> X)) > X=AAB

Now assume thatI'+¢: AA B=(A - (B — 1)) holds. We have:

(Ax)

: F'v{a:Ab:B}rra:A

F'rrt:VX(A->(B->X)) > X (=1) Fu{a:A}FrXba:B—- A

Frrt:(A>(B—->A)-> A (=1) I'xXaXba: A— (B - A)
I'+x (t)Aarba: A

(VE)

The term 7ot is typed in a similar way.
Let us also check that we have the correct reduction:

mi(t;u) = (Af ((F))u)rarba
-3 ((Aadba)t)u
-5 (Abt)u
-3 t

We have the symmetric reduction for ma(t; u).

Finally, we define Av B=VX (A > X) - ((B - X) - X) (where X is free in A and B),
i1t = AfAg (f)t, iat = A\fAg(g)t and Ct(ulv) = ((t)u)v. We can check again that all these
terms are typed correctly and that we have the corresponding reduction.

However, the logic associated to system F should once again more precisely be called “In-
tuitionistic second order propositinal logic” as the excluded middle is not valid in this logic.
In fact the following proposition is also true in system F (and the fact that no term has type
A v =Ain system F follows immediately):

Proposition 4.20:
Let t € A be normal, if there exists types Ay, As € Tr such that —x t : Ay v Ag, then there exists
uweNandje{l,2} suchthatt=1i;uandr u: A;.

20

References

References
[Krig3]].-L. Krivine. Lambda-calculus, types and models. Ellis Horwood Series in Computers

and Their Applications. Translated from the 1990 French original by René Cori. Ellis
Horwood, New York; Masson, Paris, 1993, pp. viii+180.

27

	Substitution and alpha-equivalence
	beta-reduction
	Simply typed lambda-calculus
	Enriched lambda-calculi
	Intersection types
	Intuitionistic propositional logic
	Classical propositional logic
	System F

	References

