
The λ-Calculus
Silvain Rideau

December 7, 2015

The λ-calculus was introduced by Church in one of the first attempt to formalize computa-
tion. Nowadays, it is not really used as amodel of computation, nevertheless, it plays a major
role in studying the semantics of higher order languages and in proof theory (through the
study of typed λ-calculus).
These notes were greatly inspired by [Kri93]

Definition 0.1 (L):
Let V be a (countable) set of variables and A = V ∪ {(,), λ}. The set L of λ-terms is the smallest
set of words onA such that:

• V ⊆ L;

• If t and u ∈ L, then (t)u ∈ L;

• If x ∈ V and t ∈ L, then λx t ∈ L.

Elements of L are called λ-terms. They should be thought of as functions. The λ-term (t)u
is the function t applied to u and λx t is the function x↦ t.
I will not prove it but there is a unique decomposition theorem for elements of L:

Proposition 0.2:
Let t be a λ-term, then one and only one of the following cases holds:

• t = x for some x ∈ V ;

• t = (v)u for some v and u ∈ L;

• t = λxu for some x ∈ V and u ∈ L.

Moreover, in those three cases x, u and v are unique (whenever they appear).

As usual we define the set of free and bound variables by induction on L:

Definition 0.3:
Let t be a λ-term, we define fvar(t) and bvar(t) by induction on t:

• If t = x, then fvar(t) = x and bvar(t) = ∅;

1

1 Substitution and α-equivalence

• If t = (v)u, then fvar(t) = fvar(t) ∪ fvar(u) and bvar(t) = bvar(t) ∪ bvar(u);

• If t = λxu, then fvar(t) = fvar(t) ∖ {x} and bvar(t) = bvar(t) ∪ {x}.

We define var(t) = fvar(t) ∪ bvar(t).

1 Substitution and α-equivalence
As before, we also need to define substitution:

Definition 1.1 (Simple substitution):
Let t and s ∈ L, x ∈ V , we define ts/x by induction on t:

• If t = x, then ts/x = s;

• If t = y ≠ x, then ts/x = y;

• It t = (v)u, ts/x = (vs/x)us/x;

• If t = λxu, then ts/x = t;

• If t = λy u and y ≠ x, then ts/x = λy us/x.

As usual, this notion of substitution does not give us the expected result if bvar(t)∩fvar(s) ≠
∅. For example (λy yx)y/x should be λz zy and not λy yy. When studying propositional and
predicate logic, we where always capable of avoiding having to cope with this problem, but
here, we will have to. The solution is to consider the set Λ of λ-terms up to renaming of
bound variables.
We will denote by ∣t∣ the length of t (as a word).

Lemma 1.2:
Let t ∈ L, x and y ∈ V , then ∣t∣ = ∣ty/x∣.

Proof .We proceed by induction on t. If t is a variables, so is ty/x, so they both have length one.
If t = (u)v, then ∣t∣ = 2 + ∣u∣ + ∣v∣ and by induction ∣ty/x∣ = 2 + ∣uy/x∣ + ∣vy/x∣ = 2 + ∣u∣ + ∣v∣ = ∣t∣.
Finally, if t = λxu then ty/x = t and the lemma is obvious or ∣t∣ = 2 + ∣u∣ = 2 + ∣uy/x∣ = ∣ty/x∣. ∎

Lemma 1.3:
Let t, s ∈ L and x ∈ V . If x is not free in t then ts/x = t.

Proof . This is immediate by induction on t. ∎

Lemma 1.4:
Let t, s ∈ L and x ∈ V . Assume that x ∈ fvar(t) and bvar(t) ∪ fvar(s) = ∅, then fvar(ts/x) =
(fvar(t) ∖ {x}) ∪ fvar(s) and bvar(ts/x) = bvar(t) ∪ bvar(s).

Proof .We proceed by induction on t. If t = x, then ts/x = s, fvar(ts/x) = fvar(s) = (fvar(t) ∖
{x}) ∪ fvar(s) and bvar(ts/x) = bvar(s) = bvar(t) ∪ bvar(s). If t = y ≠ x, then x ∉ fvar(t).

2

1 Substitution and α-equivalence

If t = (u)v, then ts/x = (us/x)vs/x and fvar(ts/x) = fvar(us/x) ∪ fvar(vs/x) = ((fvar(u) ∪
fvar(v)) ∖ {x}) ∪ fvar(s) = (fvar(t) ∖ {x}) ∪ fvar(s) as x must be free in u or v (or both).
Moreover, bvar(ts/x) = bvar(us/x) ∪ fvar(vs/x) = bvar(u) ∪ bvar(v) ∪ bvar(s) = bvar(t) ∪
bvar(s).
If t = λy u with y ≠ x, then ts/x = λy us/x, fvar(ts/x) = fvar(us/x) ∖ {y} = ((fvar(u) ∖ {x}) ∪
fvar(s)) ∖ y = (fvar(u) ∖ {x, y}) ∪ fvar(s) = (fvar(t) ∖ {x}) ∪ fvar(s), as y is not free in s,
and bvar(tx,s) = bvar(ux/s) ∪ {y} = bvar(u) ∪ bvar(s) ∪ {y} = bvar(t) ∪ bvar(s). ∎

Lemma 1.5:
Let t, s, u ∈ L and x ≠ y ∈ V . Assume that x ∉ fvar(u) and y ∉ fvar(s) ∩ bvar(t) then
(ts/x)u/y = (tu/y)su/y/x.

Proof .We proceed by induction on t. If t = x, then (ts/x)u/y = su/y and (tu/y)su/y/x = tsu/y/x =
su/y . If t = y, (ts/x)u/y = tu/y = u and (tu/y)su/y/x = usu/y/x = u by Lemma (1.3). If t = z distinct
from x and y, (ts/x)u/y = z = (tu/y)su/y/x.
If t = (v)w, then (ts/x)u/y = ((vs/x)u/y)(ws/x)u/y = ((vu/y)su/y/x)(wu/y)su/y/x = (tu/y)su/y/x.
If t = λxv, then (ts/x)u/y = tu/y and (tu/y)su/y/x = (λxvu/y)su/y/x = λxvu/y = tu/y . If
t = λy v, then, by hypothesis, y ∉ fvar(s), (ts/x)u/y = (λy vs/x)u/y = λy vs/x = ts/x and
(tu/y)su/y/x = tsu/y/x = ts/x by Lemma (1.3). Finally, if t = λz v where z is neither x nor y, then
(ts/x)u/y = λz (vs/x)u/y = λz (vu/y)su/y/x = (tu/y)su/y/x. ∎

Corollary 1.6:
Let t, s, u ∈ L and x, y ∈ V . Assume that x ∉ fvar(u) and y ∉ fvar(s), then (ts/x)u/y = (tu/y)s/x.

Proof . As y ∉ fvar(s), by Lemma (1.3), su/y = s and by Lemma (1.5), (ts/x)u/y = (tu/y)su/y/x =
(tu/y)s/x. ∎

Definition 1.7 (α-conversion):
Let t and t′ be λ-terms. We define t ≡α t′ by induction on ∣t∣:

• x ≡α x;

• If t ≡α t′ and u ≡α u′, then (t)u ≡α (t′)u′;

• If ty/x ≡α ty/x′ for some y ∉ var(t) ∪ var(t′), then λx t ≡α λx′ t′.

It is not immediately obvious that the above relation is an equivalence relation. To prove that
it is transitive, we will need the following:

Lemma 1.8:
Let t and t′ ∈ L be such that t ≡α t′, then fvar(t) = fvar(t′).

Proof . Let us proceed by induction on ∣t∣. If t = x, then t′ = x and fvar(t) = {x} = fvar(t′).
If t = (u)v, then t′ = (u′)v′ with u ≡α v and u′ ≡α v′ and by induction fvar(t) = fvar(u) ∪
fvar(v) = fvar(u′) ∪ fvar(v′) = fvar(t′).
Finally, if t = λxu, then t′ = λx′ u′ and for some y not appearing in t and t′, uy/x ≡α u′y/x′ .
We have fvar(t) = fvar(u) ∖ {x}, fvar(t′) = fvar(u′) ∖ {x′} and fvar(uy/x) = fvar(u′y/x′). It

3

1 Substitution and α-equivalence

follows that (fvar(u) ∖ {x}) ∪ {y} = (fvar(u′) ∖ {x′}) ∪ {y} and because y cannot appear in
u, fvar(t) = fvar(u) ∖ {x} = fvar(u′) ∖ {x′} = fvar(t′). ∎

Lemma 1.9:
Let t and t′ be two λ-terms, x, x′, y and y′ ∉ var(t)∪ var(t′). If ty/x ≡α t′y/x′ then ty′/x ≡α t′y′/x′ .

Proof .We proceed by induction on ∣t∣.
Let us first assume that t = x, then ty/x = y ≡α t′y/x′ , but the only term α-equivalent to y is y
itself, so t′y/x′ = y. As y does not appear in t′, we must have t′ = x′ and ty′/x = y′ = t′y′/x′ . If
t = z ≠ x, then t′y/x′ = z ≠ y and hence t

′ = z too. So ty′/x = z = t′y′/x′ .
If t = (u)v, then t′y/x′ = (uy/x)vy/x, so t′ = (u′)v′ and u′y/x′ ≡α uy/x and v′y/x′ ≡α vy/x. By
induction u′y′/x′ ≡α uy′/x and v′y′/x′ ≡α vy′/x and so ty′/x ≡α t′y′/x′ .
Finally, assume t = λz u. Let us first assume that z ≠ x and x′. Then t′y/x′ = λz uy/x so t′ =
λz′ u′ and for somew ∉ var(t)∪var(t′)∪{x,x′}, (uy/x)w/z ≡α (u′y/x′)w/z′ . By Corollary (1.6),
(uy/x)w/z = (uw/z)y/x and (u′y/x′)w/z′ = (u

′
w/z′)y/x′ . By induction (uw/z)y′/x ≡α (u

′
w/z′)y′/x′

and by Corollary (1.6) again, (uy′/x)w/z ≡α (u′y′/x′)w/z′ and ty′/x ≡α t′y′/x′ . If z = x ≠ x
′, then

uw/z ≡ (u′y/x′)w/z . If x
′ ∈ fvar(u′), then y ∈ fvar(u′y/x′) so y ∈ fvar((u′y/x′)w/z) = fvar(u) by

Lemma (1.8), a contradiction. So x′ ∉ fvar(u′) and uw/z ≡ u′w/z , i.e. ty′/x = t ≡α t′ = ty′/x′ . By
symmetry, the case z = x′ ≠ x is also taken care of. There remains the case z = x = x′ but in
that case ty′/x = t ≡α t′ = t′y′/x′ . ∎

Corollary 1.10:
The relation ≡α is an equivalence relation.

Proof . Reflexivity, symmetry and transitivity are proved by induction. The proof of reflexivity
and symmetry is essentially straightforward. Let us prove transitivity.
Let t, t′ and t′′ such that t ≡α t′ and t′ ≡α t′′. Let us proceed by induction on ∣t∣. If t = x, then
t′ = x hence t′′ = x. If t = (u)v, then t′ = (u′)v′ with u ≡α u′ and v ≡α v′ and t′′ = (u′′)v′′
with u′ ≡α u′′ and v′ ≡α v′′. By induction u ≡α u′′ and v ≡α v′′ and t ≡α t′′. If t = λy u, then
t′ = λy′ u′ and for some z ∉ var(t) ∪ var(t′), uz/y ≡α u′z/y′ . Then we also have t′′ = λy′′ u′′

and for some z′ ∉ var(t′) ∪ var(t′′), u′z′/y′ ≡α u′′z′/y′′ . By Lemma (1.9), we may assume that
z = z′ ∉ var(t) ∪ var(t′) ∪ var(t′′). By induction, we have uz/y ≡α u′′z/y′′ and hence t ≡α t′′. ∎

Definition 1.11 (Λ):
We define Λ = L/ ≡α.

When t ∈ L, we denote by t ∈ Λ its ≡α-class.
We now wish to show that simple substitution induces a well defined notion of substitution
on Λ. But first, let us show that the length is preserved under ≡α:

Lemma 1.12:
Let t and t′ ∈ L be such that t ≡α t′, then ∣t∣ = ∣t′∣.

Proof .We proceed by induction on ∣t∣. If t = x then t′ = x and ∣t∣ = 1 = ∣t′∣. If t = u(v), then
t′ = u′(v′) such that u′ ≡α u and v′ ≡α v. Then ∣t∣ = 2+ ∣u∣+ ∣v∣ = 2+ ∣u′∣+ ∣v′∣ = ∣t′∣. Finally, if

4

1 Substitution and α-equivalence

t = λxu, then t′ = λx′ u′ and for some y ∉ var(t) ∪ var(t′), uy/x ≡α u′y′/x′ . It follows that, by
Lemma (1.2), ∣t∣ = 2 + ∣u∣ = 2 + ∣uy/x∣ = 2 + ∣u′y′/x′ ∣ = 2 + ∣u

′∣ = ∣t′∣. ∎

Lemma 1.13:
Let t, t′ and s ∈ L and x ∈ V . If t ≡α t′ and fvar(s)∩ (bvar(t)∪bvar(t′)) = ∅, then ts/x ≡α t′s/x.

Proof .We proceed by induction on the length of t. The proof is completely straightforward
if t = x ∈ V or t = (u)v. Let us assume that t = λy u and t′ = λy′ u′. If y = x, then x
is not free in t. By Lemma (1.8), x is not free in t′ either and hence, by Lemma (1.3), ts/x =
t ≡α t′ = t′s/x. The case y

′ = x is symmetric. So we can now assume that x is neither y nor
y′. Let z ∉ var(t) ∪ var(t′) ∪ var(s). By definition of t ≡α t′, uz/y ≡α u′z/y′ and hence, by
induction, (uz/y)s/x ≡α (u′z/y′)s/x. Because y is bounded in t, it cannot be free in s (similarly
for y′) and x ≠ z so by Corollary (1.6), (us/x)z/y = (uz/y)s/x ≡α (u′z/y′)s/x = (u

′
s/x)z/y′ , so

ts/x = λy us/x ≡α λy′ u′s/x = t
′
s/x. ∎

Lemma 1.14:
Let t, s and s′ ∈ L and x ∈ V . If s ≡α s′, then ts/x ≡α ts′/x.

Proof .We proceed by induction on t. The proof is completely straightforward if t = x ∈ V
or t = (u)v. Let us assume that t = λy u. If y = x, then ts/x = t = ts′/x. So we can assume
y ≠ x. By induction, us/x ≡α us′/x. Let z ∉ fvar(t) ∪ fvar(s) ∪ fvar(s′). By Lemma (1.13),
(us/x)z/y ≡α (us′/x)z/y and hence ts/x ≡α ts′/x. ∎

Corollary 1.15:
Let t, t′, s and s′ ∈ L and x ∈ V . If t ≡α t′ and fvar(s) ∩ (bvar(t) ∪ bvar(t′)) = ∅, then
ts/x ≡α t′s′/x.

Proof . By Lemma (1.13), ts/x ≡α t′s/x and by Lemma (1.14), t′s/x ≡α t′s′/x. We conclude by tran-
sitivity of ≡α. ∎

Lemma 1.16:
Let t ∈ L andX ⊆ V be finite. There exists t′ ∈ L such that bvar(t′) ∩X = ∅ and t′ ≡α t.

Proof .We proceed by induction on t. The proof is completely straightforward if t = x ∈ V
or t = (u)v. Let us assume that t = λxu. By induction, there exists u′ such that u′ ≡α
u and bvar(u′) ∩ X = ∅. Let y ∉ X ∪ var(u′), we want to show that t ≡α λy u′y/x. Let
z ∉ var(t) ∪ var(u′) ∪ {y}. By Lemma (1.13), uz/x ≡α u′z/x and, by Lemma (1.5), (u′y/x)z/y =
(u′z/y)yz/y/x = u

′
z/x as y is not free in u′. So uz/x ≡α (u′y/x)z/y and t ≡α λy u′y/x. ∎

We can now define a substitution operation on Λ:

Definition 1.17:
Let t, s ∈ Λ and x ∈ V . We define ts/x to be the class of t′s′/x where t

′ ∈ t and s′ ∈ s are such that
fvar(s′) ∩ bvar(t′) = ∅.

Note that this is well defined by Corollary (1.15) and Lemma (1.16).

5

2 β-reduction

What we have done in this section is formalize the idea that whenever we pick a λ-term, we
can always assume that the bound variables avoid any set of variables we wish (usually, the
variables that are free in otherλ-terms). In fact, we have essentiallymade the bound variables
nameless.
Note that the map (u, v) ↦ (u)v and the map u ↦ λxu are well defined. So the notations
(u)v and λxumake sense. The map x↦ x is injective, so we will identify x and x. The maps
fvar(t) and ∣t∣ are also well defined on Λ, by Lemmas (1.12) and (1.8). Lemmas (1.3) and (1.5)
and (1.6) also remain true of the substitution on Λ. Moreover Lemma (1.5) can be improved
slightly:

Lemma 1.18:
Let t, s, u ∈ Λ and x ≠ y ∈ V . Assume that x ∉ fvar(u) then (ts/x)u/y = (tu/y)su/y/x.

Proof . By Lemma (1.16), we can find u′ ∈ u such that bvar(u′)∩ (fvar(s)∪ fvar(u)) = ∅, s′ ∈ s
such that bvar(s′) ∩ fvar(u) = ∅ and t′ ∈ t such that bvar(t′) ∩ (fvar(s) ∪ fvar(u) ∪ {y}).
Then (ts/x)u/y is the class of (t′s′/x)u′/y and (tu/y)su/y/x is the class of (t′u′/y)s′u′/y/x (to be

complete, by Lemma (1.4), bvar(t′s′/x) ⊆ bvar(t
′)∪bvar(s′), bvar(t′u′/y) ⊆ bvar(t

′)∪bvar(u′)
and fvar(su/y) ⊆ fvar(s)∪fvar(u), sowe do have bvar(t′s′/x)∪fvar(u

′) = ∅ and bvar(t′u′/y)∩
fvar(s′u′/y) = ∅). We can now conclude by Lemma (1.5). ∎

To conclude this section, let us prove this very reasonable lemma:

Lemma 1.19:
Let t ∈ Λ and x, y ∈ V . Assume that y ∉ fvar(t), then λy ty/x = λx t.

Proof .Wemay assume that y ∉ bvar(t). Then ty/x = ty/x and we have to show that λy ty/x ≡α
λx t. Let z ∉ var(t)∪{x, y}, by Lemma (1.5), (ty/x)z/y = (tz/y)yz/y/x = tz/x so (ty/x)z/y ≡α tz/x,
which concludes the proof. ∎

2 β-reduction
Definition 2.1 (β-reduction):

• Let t ∈ Λ. We say that t is a redex if there exists x ∈ V , u and v ∈ Λ such that t = (λxu)v.

• Let β = {((λxu)v, uv/x) ∶ x ∈ V,u and v ∈ Λ}.
We will write tβu instead of (t, u) ∈ β.

• Let t→β u be defined by induction on ∣t∣:
– If tβu then t→β u;

– If t = (s)w, u = (v)w and s→β v, then t→β u;

– If t = (w)s, u = (w)v and s→β v, then t→β u;

– If t = λxs, u = λxv and s→β v, then t→β u.

• Let t→⋆β u hold if there exists k ∈N and (vi)0⩽i⩽k such that vi →β vi+1, v0 = t and vk = u.

6

2 β-reduction

The relation t →β umeans that we can obtain u from t by reducing a redex somewhere in t.
The relation→⋆β is its reflexive and transitive closure.

Example 2.2:

1. (λxx)t→β t;

2. Let∆ = λx (x)x, then (∆)t→β (t)t, in particular (∆)∆→β (∆)∆;

3. Let Ω = λx ((x)x)x, then (Ω)Ω →β ((Ω)Ω)Ω →β (((Ω)Ω)Ω)Ω →β ⋯. In fact let Ωk

be defined by Ω1 = Ω and Ωk+1 = (Ωk)Ω, then (Ω)Ω→⋆β Ωk for all k > 0.

4.
((λxx)λy (y)y)(λz z)λww →β (λy (y)y)(λz z)λww

→β ((λz z)λww)(λz z)λww
→β (λww)(λz z)λww
→β (λz z)λww
→β λww.

But we also have

((λxx)λy (y)y)(λz z)λww →β ((λxx)λy (y)y)λww
→β (λy (y)y)λww
→β (λww)λww
→β λww.

Definition 2.3:
Let t ∈ Λ, we define the set sub(t) of subterms of t by induction on (the length of) t:

• If t = x, then sub(t) = {x};

• If t = (u)v, then sub(t) = sub(u) ∪ sub(v) ∪ {t};

• If t = λxu, then sub(t) = sub(u) ∪ {t}.

We say that t contains u if u ∈ sub(t).

Definition 2.4 (Normal form):
• A term t ∈ Λ is normal if it does not contain any redexes.

• A term t ∈ Λ is normalizable if there exists a normal term t′ such that t→⋆β t′.

• A term t ∈ Λ is strongly normalizable if there is no infinite sequence (ti)i∈N such that t0 = t
and ti →β ti+1.

Note that a normal term t cannot be reduced further: if t →⋆β t′ then t = t′. The converse is
false as∆∆ only reduces to itself but is not in normal form.
The β-reduction should really be conceived as a form of computation and normal forms are
the result of that computation. A strongly normalizable λ-term is a computation that always
terminates nomatter howwe proceed with the computation (note that β-reduction is a very

7

2 β-reduction

concurrent form of computation, reductions can happen ’at the same time’ in distinct places
independently). A normalizable term is a computation that terminates if we are careful.
Note that a strongly normalizable term is in particular normalizable.

Example 2.5:

1. The terms λxx, λxy,∆ and Ω are normal.

2. The term (∆)∆ is not normalizable, nor is (Ω)Ω.

3. The term (λxy)(∆)∆ is normalizable but not strongly normalizable.

Eventually we will try to isolate and describe certain classes of strongly normalizing λ-terms,
but before we do that, we will try to formalize and prove the idea that the order in which we
reduce redexes does not matter:

Theorem2.6 (Church-Rosser):
Let t, s1 and s2 ∈ Λ. Assume that t →⋆β s1 and t →⋆β s2, then there exists u ∈ Λ such that
s1 →⋆β u and s2 →⋆β u.

We say that→⋆β is confluent.
The idea of the proof is the following: first prove that if t→β s1 and t→β s2, then there exists
u ∈ Λ such that s1 →⋆β u and s2 →⋆β u (we say that →β is locally confluent) and then prove
that the theorem follows. The main problem of this proof is that in general locally confluent
relationsmay not have confluent transitive closure. What is true, however, is that a confluent
relation has a confluent transitive closure. But→β is not confluent. So we introduce another
reduction relation→ρ who is confluent and whose transitive closure is→⋆β .

Definition 2.7:
• Let t→ρ t

′ be defined by induction on (the length of) t:

– x→ρ x;

– If u→ρ u
′ and v →ρ v

′, then (u)v →ρ (u′)v′;
– If u→ρ u

′, then λxu→ρ λxu
′.

– It u→ρ u
′ and v →ρ v

′, then (λxu)v →ρ u
′
v′/x.

• Let t→⋆ρ t′ hold if there exists k ∈N and (ui)0⩽i⩽k such that ui →β ui+1, v0 = t and vk = u.

The intuitive meaning of t→ρ u is that a number of redexes occurring in t have been reduced
to obtain u.

Lemma2.8:
The relation→ρ is reflexive.

Proof . This is immediate by induction. ∎

Lemma2.9:
Let u, u′, v and v′ ∈ Λ. If u→ρ u

′ and v →ρ v
′, then uv/x →ρ u

′
v′/x.

8

2 β-reduction

Proof .We proceed by induction on u. If u = y ∈ V , then u′ = y ∈ V . If y ≠ x, then uv/x = y =
uv′/x. If y = x, uv/x = v →ρ v

′ = u′v′/x.
If u = λy t, then u′ = λy t′ and t →ρ t

′. We may assume y ≠ x. By induction tv/x →ρ t
′
v′/x and

hence uv/x = λy tv/x →ρ λy t
′
v′/x = u

′
v′/x.

If u = (t)s, then there are two possibilities. Let us first assume that u′ = (t′)s′, t →ρ t′

and s →ρ s′. Then, by induction tv/x →ρ t′v′/x and sv/x →ρ s′v′/x so uv/x = (tv/x)sv/x →ρ

(t′v′/x)s
′
v′/x = u

′
v′/x.

Otherwise u = (λy t)s and u′ = t′s′/y where t →ρ t′ and s →ρ s′. We may assume y ≠ x
and y ∉ fvar(v′). By induction, tv/x →ρ t′v′/x and sv/x →ρ s′v′/x so uv/x = (λy tv/x)sv/x →ρ

(t′v′/x)s′v′/x/y = (t
′
s′/y)v′/x = u

′
v′/x. The one before last equality follows from Lemma (1.18) as

y ∉ fvar(v′). ∎

Lemma2.10:
Let t, s1 and s2 ∈ Λ. Assume that t →ρ s1 and t →ρ s2, then there exists u ∈ Λ such that s1 →ρ u
and s2 →ρ u.

Proof .We proceed by induction on t. If t = x, then s1 = s2 = x and it suffices to take u = x.
If t = λxv, then si = λxwi and v →ρ wi. By induction there exists u such that vi →ρ u, for
i = 1,2. Then si = λxwi →ρ λxu.
If t = (v)w, there are numerous cases to consider. First, si = (ai)bi for i = 1,2 where v →ρ ai
and w →ρ bi. By induction, there exists c and d such that ai →ρ c and bi →ρ d. Then si =
(ai)bi →ρ (c)d.
If t = (λxv)w and si = (ai)bi/x for i = 1,2, where v →ρ ai and w →ρ bi. By induction, there
exists c and d such that ai →ρ c and bi →ρ d. Then, by Lemma (2.9), si = (ai)bi/x →ρ cd/x.
Finally, by symmetry, there only remains the case t = (λxv)w, s1 = (a1)b1/x and s2 =
(λxa2)b2 where v →ρ ai andw →ρ bi. By induction, there exist c and d such that ai →ρ c and
bi →ρ d. We have s1 →ρ cd/x by Lemma (2.9) and s2 →ρ cd/x by definition. ∎

Lemma2.11:
Let t, s1 and s2 ∈ Λ. Assume that t →⋆ρ s1 and t →ρ s2, then there exists u ∈ Λ such that s1 →ρ u
and s2 →⋆ρ u.

Proof . By definition of t →⋆ρ s1, there exists vi such that vi →ρ vi+1, v0 = t and vk = s1. We
proceed by induction on k. If k = 0, then we can take u = s2.
Otherwise, by Lemma (2.10), there exists w such that v1 →ρ w and s2 →ρ w. So now we have
v1 →⋆ρ s1 in k − 1 steps so, by induction, there exists u such that s1 →ρ u and w →⋆ρ u and
hence s2 →⋆ρ u. ∎

Lemma2.12:
Let t, s1 and s2 ∈ Λ. Assume that t →⋆ρ s1 and t →⋆ρ s2, then there exists u ∈ Λ such that s1 →⋆ρ u
and s2 →⋆ρ u.

Proof . By definition of t →⋆ρ s2, there exists vi such that vi →ρ vi+1, v0 = t and vk = s2. We
proceed by induction on k. If k = 0, then we can take u = s1.

9

2 β-reduction

Otherwise, by Lemma (2.11), there exists w such that v1 →⋆ρ w and s1 →ρ w. So now we have
v1 →⋆ρ s2 in k − 1 steps so, by induction, there exists u such that s2 →⋆ρ u and w →⋆ρ u and
hence s1 →⋆ρ u. ∎

Lemma2.13:
Let t, u ∈ Λ. If t→β u, then t→ρ u.

Proof .We proceed by induction on t. If tβu, then t = (λxs)v and u = sv/x. By Lemma (2.8),
we have s→ρ s and v →ρ v.It follows that (λxs)v →ρ sv/x.
If t = λxs, then u = λxv where s→β v. By induction s→ρ v and hence λxs→ρ λxv.
The two remaining cases are t = (s)w and u = (v)w or t = (w)s and u = (w)v where s→β v.
By induction, s →ρ v, by Lemma (2.8) w →ρ w and hence (s)w →ρ (v)w and (w)s →ρ (w)v.
∎

Lemma2.14:
Let t, u ∈ Λ. If t→ρ u, then t→⋆β u.

Proof .We proceed by induction on t. If t = x, thenu = x andx→⋆β x. If t = λxs, thenu = λxv
and s →ρ v. By induction s →⋆β v and hence t = λxs →⋆β λxv = u (this follows immediately
from the fact that if vi →β vi+1, then λxvi →β λxvi+1).
If t = (s)v and u = (a)b where s →ρ a and v →ρ b, by induction, s →⋆β a and v →⋆β b, so
(s)v →⋆β (a)v →

⋆
β (a)b (these two statement follow from the fact that if vi →β vi+1, then

(vi)v →β (vi+1)v and (a)vi →β (a)vi+1).
The only remaining case is t = (λxs)v and u = ab/x where s →ρ a and v →ρ b. By induction,
s→⋆β a and v →⋆β b, and hence (λxs)v →⋆β (λxa)v →

⋆
β (λxa)b→β ab/x. ∎

Corollary 2.15:
Let t, u ∈ Λ. If t→⋆β u if and only if t→⋆ρ u.

Proof . This follows immediately from Lemmas (2.13) and (2.14). ∎

Proof (Theorem (2.6)). This is immediate by Lemma (2.12) and Corollary (2.15). ∎

Definition 2.16 (β-conversion):
We say that t and u ∈ Λ are β-equivalent (and we write t ≡β u) if there exists v ∈ Λ such that
t→⋆β v and u→⋆β v.

Proposition 2.17:
The relation ≡β is an equivalence relation.

Proof . Reflexivity and symmetry is evident. Let us prove transitivity. Let t, s, u ∈ Λ be such
that t ≡β s ≡β u. By definition there exists v and w ∈ Λ such that t→⋆β v, s→⋆β v, s→⋆β w and
u →⋆β w. By Theorem (2.6), there exists a ∈ Λ such that v →⋆β a and w →⋆β a, so t →⋆β a and
u→⋆β a and hence t ≡β u. ∎

Remark 2.18:
Note that if u is normal and t ≡β u, then t →⋆β u. It follows that if both t and u are normal
and β-equivalent they are equal. Normalizable terms are exactly those whose β-equivalence

10

3 Simply typed λ-calculus

class contains one (and only one) normal form.

3 Simply typed λ-calculus
We wish to characterize a subset of Λ that only contains strongly normalizable terms
Let us have a look at one pathological examples: (∆)∆ where∆ = λx (x)x. The reason this
term is problematic is because x is applied to itself. If we follow our intuition that λ-terms
are functions then X is both a element in a set A and a function in AB for some set B and
that should not be possible. To prevent (∆)∆ from being an admissible term, we are going to
prevent∆ from appearing altogether (although∆ alone is strongly normalizable) by forcing
terms to have types, that is only consider terms that have awell defined “domain” and “image”.

Definition 3.1 (Type):
LetW be a set (disjoint from V the set of variables). The set T of types is the smallest set of words
onW ∪ {(,),→} (where the union is supposed to be disjoint) such that:

• W ⊆ T ;

• IfA andB ∈ T , then (A→ B) ∈ T .

The elements ofW are called the type variables or the basic types.

Definition 3.2 (Context):
A context is a set Γ of pairs (x ∶ A) where x ∈ V and A ∈ T such that if (x ∶ A) and (x ∶ B) ∈ Γ,
then A = B.

A context is therefore a partial function from V to T .

Definition 3.3:
Let Γ be a context, A ∈ T and t ∈ Λ. We define Γ ⊢ t ∶ A to be the smallest relation such that:

• If x ∈ V , then Γ ∪ {x ∶ A} ⊢ x ∶ A;

• If x ∈ V does not appear in Γ and Γ ∪ {x ∶ A} ⊢ t ∶ B then Γ ⊢ λx t ∶ A→ B;

• If Γ1 ⊢ t ∶ A → B and Γ2 ⊢ u ∶ A then Γ1 ∪ Γ2 ⊢ (t)u ∶ B (provided Γ1 ∪ Γ2 is indeed a
context).

If Γ ⊢ t ∶ A, we say that t has type A in the context Γ. As before, we will call a witness that a
typing statement holds a typing derivation. We can also write those using inference rules:

(Ax)
Γ ∪ {x ∶A} ⊢ x ∶A

Γ ∪ {x ∶A} ⊢ t ∶B
(→I) Γ ⊢ λx t ∶A→ B

Γ1 ⊢ t ∶A→ B Γ2 ⊢ u ∶A(→E)
Γ1 ∪ Γ2 ⊢ (t)u ∶B

11

3 Simply typed λ-calculus

Note that, depending on the form of t, only one rule applies. So looking at t one can predict
what was the last rule applied in a typing derivation of t.
If we only keep the types (and hence only look at what is in black), we recognize a fragment
of the deduction rules for propositional logic. This analogy is called the Curry-Howard cor-
respondence. Here is a table that summarizes the aspects of the analogy that will be relevant
to us:

λ-calculus Logic
Types Formulas

Typing statements Deductions
Typing derivations Deduction derivations

β-reduction Proof simplification
Normal λ-terms Normal proofs

Note that removing the terms is a completely harmless thing to do. Given a deduction deriva-
tion, we can reconstruct a (unique) λ-termwhose typing derivation would correspond to the
deduction derivation we started from.
Let us now give some examples:

(Ax)
x ∶ A ⊢ x ∶ A(→I) ⊢ λxx ∶ A→ A

This is both a typing derivation for the identity λ-term and a proof of reflexivity of→.

(Ax)
y ∶ B → C ⊢ y ∶ B → C

(Ax)
x ∶ A→ B ⊢ y ∶ A→ B

(Ax)
z ∶ A ⊢ z ∶ A

{x ∶ A→ B, z ∶ A} ⊢ (x)z ∶ B
{x ∶ A→ B,y ∶ B → C, z ∶ A} ⊢ (y)(x)z ∶ C

(→I) {x ∶ A→ B,y ∶ B → C} ⊢ λz (y)(x)z ∶ A→ C
(→I)

x ∶ A→ B ⊢ λyλz (y)(x)z ∶ (B → C)→ (A→ C)
(→I) ⊢ λxλyλz (y)(x)z ∶ (A→ B)→ ((B → C)→ (A→ C))

This is a derivation of the transitivity of→.

An obvious consequence of the fact that the typing rules correspond to deduction rules for
propositional logic is that T can be seen as a subset of the set of propositional variables
with variables in W and that if ⊢ t ∶ φ then ⊧ φ, i.e. φ is a tautology. However, the con-
verse is not true even if we consider only formulas containing the connective →. In fact,
the Curry-Howard correspondence relates λ-calculus and intuitionistic logic (in the case of
simply typed λ-calculus, the implicative fragment of intuitionistic logic).

Lemma 3.4:
Let Γ ⊆ Γ′ be contexts, t ∈ λ andA ∈ T . If Γ ⊢ t ∶ A, then Γ′ ⊢ t ∶ A.

Proof .We proceed by induction on t. If t = x then the last rule applied must be (Ax), so
x ∶ A ∈ Γ ⊆ Γ′ so, applying (Ax), Γ′ ⊢ x ∶ A.

12

3 Simply typed λ-calculus

If t = (u)v, then the last applied ruled must be (→E) so there exists C ∈ T and contexts Γ1

and Γ2 such that Γ = Γ1 ∪ Γ2, Γ1 ⊢ u ∶ C → A and Γ2 ⊢ v ∶ C . By induction Γ′ ⊢ u ∶ C → A
and Γ′ ⊢ v ∶ C and, applying (→E), we have Γ′ ⊢ (u)v ∶ A.
Finally, if t = λxu (we may assume x ∉ Γ′), then the last applied rule must be (→I) and
there exists C , D ∈ T such that A = C → D and Γ ∪ {x ∶ C} ⊢ u ∶ D. By induction
Γ′ ∪ {x ∶ C} ⊢ u ∶D and, applying (→I), Γ′ ⊢ λxu ∶ C →D. ∎

Lemma 3.5:
Let t, u ∈ Λ, Γ be a context,A,B ∈ T and x ∈ V . Assume that Γ ∪ {x ∶ B} ⊢ t ∶ A and Γ ⊢ u ∶ B,
then Γ ⊢ tu/x ∶ A.

Proof .We proceed by induction on t. If t = x, then because Γ ∪ {x ∶ B} ⊢ t ∶ A, we must
have A = B. As tu/x = u, we have Γ ⊢ tu/x ∶ A. If t = y ≠ x, then tu/x = t = y and we have
Γ ∪ {x ∶ B} ⊢ y ∶ A, so y ∶ A ∈ Γ and Γ ⊢ tu/x ∶ A.
If t = (s)v, then the last rule applied was (→E) and there exists C ∈ T and contexts Γ1 and
Γ2 such that Γ1 ∪ Γ2 = Γ ∪ {x ∶ B}, Γ1 ⊢ s ∶ C → A and Γ1 ⊢ v ∶ C . By Lemma (3.4), we can
assume that Γ1 = Γ2 = Γ ∪ {x ∶ B}. By induction, Γ ⊢ su/x ∶ C → A and Γ ⊢ vu/x ∶ C . So
applying the rule (→E), we get that Γ ⊢ (su/x)vu/x ∶ A and, as tu/x = (su/x)vu/x, we are done.
If t = λy s (we may assume that y ≠ x), then the last rule applied was (→I), so A = C → D
and Γ ∪ {x ∶ B,y ∶ C} ⊢ s ∶ D. By induction Γ ∪ {y ∶ C} ⊢ su/x ∶ D and applying rule (→E),
Γ ⊢ λy su/x ∶ C →D and that concludes the proof as tu/x = λy su/x. ∎

Proposition 3.6:
Let t, u ∈ Λ, Γ be a context and A ∈ T . Let us assume that Γ ⊢ t ∶ A and t→β u, then Γ ⊢ u ∶ A.

Proof .We proceed by induction on t. If tβu, then t = (λxs)v and u = sv/x (where we might
assume that x is not free in u). The end of the derivation of Γ ⊢ (λxs)v ∶ Amust look like:

⋮
Γ1 ∪ {x ∶ B} ⊢ s ∶ A(→I) Γ1 ⊢ λxs ∶ B → A

⋮
Γ2 ⊢ v ∶ B(→E)

Γ1 ∪ Γ2 ⊢ (λs t)v ∶ A

Where Γ = Γ1 ∪ Γ2 andB is some type. By Lemma (3.4), we can assume that Γ1 = Γ2 = Γ. By
Lemma (3.5), we have that Γ ⊢ sv/x ∶ A.
If t = (s)w, u = (v)w and s→β v, wemust haveΓ ⊢ s ∶ C → A for some typeC andΓ ⊢ w ∶ C .
By induction Γ ⊢ v ∶ C → A and hence Γ ⊢ (v)w ∶ A.
If t = (w)s, u = (w)v and s→β v, wemust haveΓ ⊢ w ∶ C → A for some typeC andΓ ⊢ s ∶ C .
By induction Γ ⊢ v ∶ C and hence Γ ⊢ (w)v ∶ A.
Finally, if t = λxs, u = λxv and s →β v, we must have A = C → D for some types C and D
and Γ ∪ {x ∶ C} ⊢ s ∶D. By induction Γ ∪ {x ∶ C} ⊢ v ∶D and hence Γ ⊢ λxv ∶ C →D. ∎

Note that if you prove B under some hypothesis Γ1 and B → A under some hypothesis
Γ2 then Modus Ponens (or (→E)) tells you that you can prove A assuming Γ1 and Γ2. But
another proof of A (in some sense more straightforward), would be to look at the proof of
B → A and each time you use the hypothesis B replace that by the proof of B. This is

13

3 Simply typed λ-calculus

exactly the transformation on proofs associated to β-reduction. Strong normalizability of
the term whose typing derivation corresponds to some deduction derivation implies that
this “simplification” algorithm terminates.

Corollary 3.7:
Let t, u ∈ Λ, Γ be a context and A ∈ T . Let us assume that Γ ⊢ t ∶ A and t→⋆β u, then Γ ⊢ u ∶ A.

Proof . This is an immediate by Proposition (3.6) and induction on the number of steps re-
quired to reduce t into u. ∎

We now want to prove the following:

Theorem 3.8:
Let t ∈ Λ, Γ be a context and A ∈ T . If Γ ⊢ t ∶ A then t is strongly normalizable.

The proof is rather convoluted and involves interpreting types as set of (strongly normaliz-
able) terms that contain all the terms that can be given this particular type. LetN be the set
of all strongly normalizing terms.

Definition 3.9:
Let ∣A∣ be defined by induction on A:

• IfX ∈W , ∣X ∣ = N ;

• ∣A→ B∣ = {t ∈ Λ ∶ for all u ∈ ∣A∣, (t)u ∈ ∣B∣}.

We now want to show that for all type A, ∣A∣ ⊆ N and for all t ∈ Λ, if Γ ⊢ t ∶ A then t ∈ ∣A∣.
But that will require setting up some tools.

Definition 3.10:
Let S ⊆ Λ. We say that S is saturated if for all x ∈ V , ti and u ∈ Λ and all t ∈ N , if
(. . . ((ut/x)t1) . . .)tn ∈ S then (. . . ((λxu)t)t1 . . .)tn ∈ S.

The intuition behind saturation is thatS is saturated if is closed backwards under the relation
→β (at least under certain specific β-expansions).

Lemma 3.11:
If S1 ⊆ Λ is saturated, then for all S2 ⊆ Λ, S2 → S1 = {t ∈ Λ ∶ for all u ∈ S2, (t)u ∈ S1} is
saturated.

Proof . Let t ∈ N , ti, u ∈ Λ and x ∈ V such that (. . . ((ut/x)t1) . . .)tn ∈ S2 → S1. By defini-
tion, for all tn+1 ∈ S2, ((. . . ((ut/x)t1) . . .)tn)tn+1 ∈ S1. Since S1 is saturated, we also have
((. . . (((λxu)t)t1) . . .)tn)tn+1 ∈ S1. It follows that (. . . (((λxu)t)t1) . . .)tn ∈ S2 → S1. ∎

Lemma 3.12:
Let S1, S′1, S2 and S′2 ⊆ Λ. If S′1 ⊆ S1 and S2 ⊆ S′2 then S1 → S2 ⊆ S′1 → S′2.

Proof . Pick t ∈ S1 → S2 and u ∈ S′1 ⊆ S1. By definition (t)u ∈ S2 ⊆ S′2 and hence t ∈ S′1 → S′2.
∎

14

3 Simply typed λ-calculus

Lemma 3.13:
N is saturated.

Proof . Let us begin with the following claim:

Claim 3.14: Let t ∈ N . The set red(t) = {u ∶ t→⋆β u} is finite.

Proof . Assume it is not. Let us construct by induction a sequence vi such that v0 = t, red(vi)
is infinite and vi →β vi contradicting the strong normalizability of t. Let us assume that vi
has been built. We have red(vi) = ⋃vi→βu red(u) and there are only finitely many u such that
vi →β u as there are only finitely many redexes in vi. So, if red(vi) is infinite, there exists u
such that vi →β u and red(u) is finite. Take vi+1 = u. ⧫

Let t ∈ N , ti, u ∈ Λ and x ∈ V such that s = (. . . ((ut/x)t1) . . .)tn ∈ N , we have to prove that
v = (. . . (((λxu)t)t1) . . .)tn ∈ N . We proceed by induction on (∣red(t)∣, ∣red(s)∣) ordered
lexicographically.
To prove that v ∈ N it suffices to prove that for v′ such that v →β v′, v′ ∈ N . Let us consider
what are the possible β-reduct of v:

• First of all we could have v′ = s which is by hypothesis inN .

• Second, we could have u→β u′ and v′ = (. . . (((λxu′)t)t1) . . .)tn. By Lemma (2.13), we
have u →ρ u′ and by Lemma (2.9), ut/x →ρ u′t/x, so by Lemma (2.14), ut/x →⋆β u′t/x. It
follows that s →⋆β (. . . ((u

′
t/x)t1) . . .)tn = s

′ (in particular s′ ∈ N). We have s′ ∈ red(s)
so red(s′) ⊆ red(s), but s ∉ red(s′) (that would contradict the strong normalizability
of s), so ∣red(s′)∣ < cardred(s). It follows by induction that v′ ∈ N .

• There exists t′i ∈ Λ such that v′ = (. . . ((. . . (((λxu)t)t1) . . .)t′i) . . .)tn. Then s →β

(. . . ((. . . ((ut/x)t1) . . .)t′i) . . .)tn = s′, ∣red(s′)∣ < ∣red(s)∣ and by induction v′ ∈ N .

• There exists t′ ∈ Λ such that v′ = (. . . (((λxu)t′)t1) . . .)tn ∈ N . By Lemma (2.13), we
have t →ρ t′ and by Lemma (2.9), ut/x →ρ ut′/x, so by Lemma (2.14), ut/x →⋆β ut′/x. It
follows that s →⋆β (. . . ((ut′/x)t1) . . .)tn = s

′. In particular s′ ∈ N . Moreover ∣red(t)∣ <
∣red(t′)∣ and by induction (on t′ and s′), we have that v′ ∈ N .

That concludes the proof. ∎

LetN0 be the set of terms of the form (. . . ((x)t1) . . .)tn where x ∈ V and ti ∈ N .

Lemma 3.15:
We have:

• N0 ⊆ N ;

• N0 ⊆ N → N0;

• N0 → N ⊆ N .

Proof .

15

3 Simply typed λ-calculus

• Let u = (. . . ((x)t1) . . .)tn ∈ N0. We proceed by induction on ∑i ∣red(ti)∣. Let u′ ∈ Λ
be such that u→β u′. Then there exists t′i such that u

′ = (. . . ((. . . ((x)t1) . . .)t′i) . . .)tn
and ti →β t′i. Then ∣red(t′i)∣ < ∣red(ti)∣ and hence u′ ∈ N by induction. We have proved
that every β-reduct of u is strongly normalizable so u ∈ N .

• Pick any u = (. . . ((x)t1) . . .)tn ∈ N0 and tn+1 ∈ N . Then, by definition, (u)tn+1 =
((. . . ((x)t1) . . .)tn)tn+1 ∈ N0. It follows that u ∈ N → N0.

• Pick any u ∈ N0 → N . By definition, x ∈ N0 and (u)x ∈ N . We proceed by induction
on ∣red((u)x)∣. Let u′ ∈ Λ be such that u →β u′, then (u)x →β (u′)x and hence
∣red((u′)x)∣ < ∣red((u)x)∣. By induction u′ ∈ N and hence u ∈ N .

That concludes the proof. ∎

Lemma 3.16:
Let A ∈ T . We have:

• |A| is saturated;

• N0 ⊆ ∣A∣ ⊆ N .

Proof .We proceed by induction on A. If A ∈ W , then ∣A∣ = N is saturated by Lemma (3.13)
andN0 ⊆ ∣A∣ ⊆ N , by Lemma (3.15).
If A = B → C , then ∣A∣ = ∣B∣ → ∣C ∣ and ∣C ∣ is saturated by induction. Hence, so is ∣A∣, by
Lemma (3.11). MoreoverN0 ⊆ ∣B∣ and ∣C ∣ ⊆ N by induction so ∣B∣ → ∣C ∣ ⊆ N0 → N ⊆ N by
Lemmas Lemma (3.12) and Lemma (3.15). Similarly,N0 ⊆ ∣C ∣ and ∣B∣ ⊆ N soN0 ⊆ N → N0 ⊆
∣b∣→ ∣C ∣. ∎

Lemma 3.17:
Let t ,ui ∈ Λ, Γ = {(xi ∶ Ai) ∶ 0 < i ⩽ n} be a context and A ∈ T . Assume that xi ∉ ⋃j<i fvar(tj),
Γ ⊢ t ∶ A and ui ∈ ∣Ai∣, then s = (. . . (tu1/x1

) . . .)tn/xn
∈ ∣A∣.

Thehypothesisxi ∉ ⋃j<i fvar(tj) is just there to insure that the substitution is a simultaneous
one (like we defined for propositional/predicate logic).

Proof .We proceed by induction on t. If t = x, then Γ ⊢ x ∶ A so x = xi for some i,A = Ai and
s = ti ∈ ∣Ai∣ (this can be seen easily by induction on n and it is where the hypothesis on xi is
used).
If t = λxv, we may assume that x ≠ xi and x ∉ fvar(ti) for all i. Moreover, we must have
A = C → D and Γ ∪ {x ∶ C} ⊢ v ∶ D. Pick u ∈ ∣C ∣. By induction ((. . . (vu1/x1

) . . .)un/xn
)u/x ∈

cardC . Let w = (. . . (vu1/x1
) . . .)un/xn

. Because ∣C ∣ is saturated (see Lemma (3.16)), we have
s = (λxw)u ∈ ∣C ∣.
Finally, if t = (v)w, then there is some C ∈ T such that Γ ⊢ v ∶ C → A and Γ ⊢ w ∶ C .
By induction v′ = (. . . (vu1/x1

) . . .)tn/xn
∈ ∣C → A∣ and w′ = (. . . (wu1/x1

) . . .)tn/xn
∣C ∣, so by

definition of ∣C → A∣, s = (v′)w′ ∈ ∣A∣. ∎

Proof . (Theorem (3.8)) Let Γ = {(xi ∶ Ai) ∶ 0 < i ⩽ n}. By Lemma (3.16), xi ∈ N0 ⊆ ∣Ai∣ and
hence, by Lemma (3.17), t = (. . . (t)x1/x1

. . .)xn/xn
∈ ∣A∣ ⊆ N (the last inclusion is proved in

Lemma (3.16)). ∎

16

3 Simply typed λ-calculus

As discussed earlier, the logicwe get by only allowing the rule (Ax), (→I) and (→E) is weaker
than propositional logic even if we restrict to those formulas that only contain →. We can
now make that remark formal. We can now prove that there are no λ-term whose type is
((A→ B)→ A)→ A although that last formula is a tautology (often called Pierce’s law).

Lemma 3.18:
Let t be a normal λ-term. Then there exists variables x and xi and normal terms uj such that
t = λx1 ⋅ λxk (. . . ((x)u1) . . .)un.

Proof .We proceed by induction on t. If t = x then t is of the right form. If t = λx0s then by
induction s = λx1 ⋅ λxk (. . . ((x)u1) . . .)un and t = λx0λx1 ⋅ λxk (. . . ((x)u1) . . .)un is of the
right form. If t = (s)v, then s and v are normal and s cannot be of the form lambdaxw or else
twould be a redex. By induction s = (. . . ((x)u1) . . .)un and hence t = ((. . . ((x)u1) . . .)un)v
which is of the right form. ∎

Lemma 3.19:
Let t ∈ Λ, A ∈ T , x ∈ V and Γ be a context. If Γ ⊢ t ∶ A and x ∈ fvar(t) then there is some C ∈ T
such that (x ∶ C) ∈ Γ.

Proof .We proceed by induction on t. If t = x, the only applicable rule is (Ax) and hence
(x ∶ A) ∈ Γ. If t = λy s, wemay assume that y ≠ x,A = C →D andwe haveΓ∪{y ∶ C} ⊢ s ∶D.
We have x ∈ fvar(t) = fvar(s) ∖ {y} and hence by induction there is some E ∈ T such that
(x ∶ E) ∈ Γ ∪ {y ∶ C}. But because x ≠ y, we must have (x ∶ E) ∈ Γ. If t = (u)v, then
Γ ⊢ u ∶ C → A for some C ∈ T and Γ ⊢ v ∶ C . As x ∈ fvar(t) = fvar(u) ∪ fvar(v), xmust be
free in either u or v and by induction there is some E ∈ T such that (x ∶ E) ∈ Γ. ∎

Proposition 3.20:
Let A,B ∈ T . There is no λ-term whose type is ((A→ B)→ A)→ A in the empty context.

Proof . Assume such a t ∈ Λ exists. By Theorem (3.8), t is strongly normalizable. Let u be the
(unique) normal form of t By Proposition (3.6), we also have ⊢ u ∶ ((A → B) → A) → A.
So we may assume that t = u is normal. By Lemma (3.18), t = λx1 ⋅ λxk (. . . ((x)u1) . . .)un
for some x and xi ∈ V and ui ∈ N . Because the only applicable typing rule is (→I), we see
that the type of t has to be of the form A1 → (A2 . . . → (An → An+1) . . .) where Ai ∈ T and
hence k = 0 or 1. If k = 0, t = (. . . ((x)u1) . . .)un and x is free in t. But, by Lemma (3.19), t
cannot be typed in the empty context. So we must have k = 1, t = λx(. . . ((x)u1) . . .)un (by
Lemma (3.19), the variable x must be bound in t, so it must be x1) and x ∶ (A → B) → A ⊢
(. . . ((x)u1) . . .)un ∶ A. The only applicable rule is (→E) and hence there exists Ci ∈ T such
that x ∶ (A → B) → A ⊢ ui ∶ Ci and x ∶ (A → B) → A ⊢ C1 → (C2 → . . . (Cn → A) . . .). It
follows that (A→ B)→ A = C1 → (C2 → . . . (Cn → A) . . .) and so n = 1 and C1 = A→ B.
We have obtained so far that there exists u ∈ N such that x ∶ (A → B) → A ⊢ u ∶ A → B.
By Lemma (3.18), t = λy1 ⋅ λyk (. . . ((y)v1) . . .)vn for some y and yi ∈ V and vi ∈ N . As
before k = 0 or 1. If k = 0, then y = x and we must have x ∶ (A → B) → A ⊢ D1 →
(D2 . . . → (Dn → (A → B)) . . .) for someDi ∈ T and thus (A → B) → A = D1 → (D2 . . . →
(Dn → (A → B)) . . .). But that is impossible. It follows that k = 1 and we must have
{x ∶ (A → B) → A,y1 ∶ A} ⊢ (. . . ((y)v1) . . .)vn ∶ B where y = x or y1 and hence {x ∶ (A →

17

4 Enriched λ-calculi

B) → A,y1 ∶ A} ⊢ y ∶ D1 → (D2 . . . → (Dn → B) . . .). This is not possible if y = x nor if
y = y1 so this is a contradiction. ∎

Note that the “simplification” for proofs played a fundamental role in this argument.

4 Enriched λ-calculi
The fact that we end up with a weaker logic could come from the fact that we can only treat
the connective →. One natural solution to this problem could be to enrich our λ-calculus
and/or our type system to obtain a Curry-Howard correspondence with a larger fragment of
propositional logic. I will outline four different possible enrichments onemight want to con-
sider. There are manymore and some even allow for example to also obtain a Curry-Howard
correspondence with fragments of predicate logic or higher order logic (we will consider one
of those at the end).

4.1 Intersection types
One first thing we could do is add an intersection to our types:

Definition 4.1 (Intersection types):
LetW be a set (disjoint from V the set of variables). The set TD of intersection types is the smallest
set of words onW ∪ {(,),→,∧} (where the union is supposed to be disjoint) such that:

• W ⊆ TD;

• IfA andB ∈ TD , then (A→ B) and (A ∧B) ∈ TD .

We keep the old typing rules:

(Ax)
Γ ∪ {x ∶A} ⊢D x ∶A

Γ ∪ {x ∶A} ⊢D t ∶B
(→I) Γ ⊢D λx t ∶A→ B

Γ1 ⊢D t ∶A→ B Γ2 ⊢D u ∶A(→E)
Γ1 ∪ Γ2 ⊢D (t)u ∶B

And we add three new rules:

Γ1 ⊢D t ∶A Γ2 ⊢D t ∶B(∧I) Γ1 ∪ Γ2 ⊢D t ∶A ∧B
Γ ⊢D t ∶A ∧B(∧EL) Γ ⊢D t ∶A

Γ ⊢D t ∶A ∧B(∧ER) Γ ⊢D t ∶R

Most of the result we proved for simply typed λ-calculus still hold (with very similar proofs):

Proposition 4.2:
Let t, u ∈ Λ, Γ be a context and A ∈ TD . Let us assume that Γ ⊢D t ∶ A and t →⋆β u, then
Γ ⊢D u ∶ A.

Theorem4.3:
Let t ∈ Λ, Γ be a context and A ∈ TD . If Γ ⊢D t ∶ A then t is strongly normalizable.

18

4 Enriched λ-calculi

Remember that our initial goal when introducing types was to characterize certain classes
of strongly normalizing terms. To do that we had to get rid of (∆)∆ = (λ (x)x)λ (x)x and
when we introduced simple types, we got rid of λ (x)x although this term is perfectly fine,
being normal. Intersection types do not suffer from this flaw:

(Ax)
x ∶ A ∧ (A→ B) ⊢D xA ∧ (A→ B)

(∧ER)
x ∶ A ∧ (A→ B) ⊢D x ∶ A→ B

(Ax)
x ∶ A ∧ (A→ B) ⊢D xA ∧ (A→ B)

(∧EL)
x ∶ A ∧ (A→ B) ⊢D x ∶ A

(→E)
x ∶ A ∧ (A→ B) ⊢D (x)x ∶ B(→I) ⊢D λx (x)x ∶ (A ∧ (A→ B))→ B

In fact, we can prove that we got rid of this flaw altogether:

Theorem4.4:
Let t ∈ Λ, Γ be a context and A ∈ TD . The following are equivalent:

(i) Γ ⊢D t ∶ A;

(ii) t is strongly normalizable.

We can also show that Pierce’s law is the D-type of no λ-term and hence that it cannot be
derived using only (Ax), (→I), (→E), (∧I), (∧EL) and (∧ER).

4.2 Intuitionistic propositional logic
Intersection types completely solve the problem of characterizing strongly normal terms.
Nevertheless from a logical perspective, they are not completely satisfying as the D-types
represent a rather small fragment of all propositional formulas. One way to obtain a type
system whose types are exactly the formulas of propositional logic is the following (but it
requires changing the λ terms and the notion of reduction):

Definition 4.5:
Let V be a (countable) set of variables and A = V ∪ {(,), λ, ⟨, ⟩, ; , π1, π2,C, ∣, i1, i2,∇}. The set
LI is the smallest set of words on A such that:

• V ⊆ LI ;

• If t and u ∈ LI , then (t)u and ⟨t;u⟩ ∈ LI ;

• If x ∈ V and t ∈ LI , then λx t ∈ LI .

• If t ∈ LI , then π1t, π2t, i1t, i2t and ∇t ∈ LI ;

• If t, u, v ∈ LI then Ct(u∣v) ∈ LI .

As for the terms in L, we can define a notion of α-conversion and we define ΛI = LI/ ≡α.
The construction ⟨t;u⟩ ∈ LI corresponds to pairs, π1t and π2t to the two projections. The
other construction are somewhat more complex to describe but, for what it is worth, ∇t

19

4 Enriched λ-calculi

corresponds to an error being raised by the program and Ct(u∣v) corresponds to a pattern
matching on t and i1 and i2 are the two constructors for the pattern matching. This might
become clearer once we have the reduction rules:

(β) (λx t)u→β tu/x;

(π1) π1⟨t;u⟩→π t;

(π2) π2⟨t;u⟩→π u;

(C1) Ci1t(u∣v)→C (u)t;

(C2) Ci2t(u∣v)→C (v)t;

(∇) (∇t)u→∇ ∇t.

We define a notion of reduction t →I u by allowing any of the above reductions to happen
anywhere in t:

Definition 4.6:
Let t and u ∈ ΛI . We define t→I u by induction on t:

• If t→◻ u where ◻ ∈ {β,π,C,∇}, then t→I u;

• If t→I u then for x ∈ V , s, v ∈ ΛI and◻ ∈ {π1, π2, i1, i2,∇}, λx t→I λxu, (t)s→I (u)s,
(s)t→I (s)u, ⟨t; s⟩→ ⟨u; s⟩, ⟨s; t⟩→ ⟨s;u⟩, ◻t→I ◻u, Ct(s∣v)→I Cu(s∣v), Cs(t∣v)→I
Cs(u∣v) and Cv(s∣t)→I Cv(s∣u).

Definition 4.7:
Let W be a set (disjoint from V the set of variables). The set TI is the smallest set of words on
W ∪ {(,),→,∧,∨,�} (where the union is supposed to be disjoint) such that:

• W ⊆ TI ;

• � ∈ TI

• IfA andB ∈ TI , then (A→ B) (A ∧B) and (A ∨B) ∈ TI .

And we consider the following typing rules:

(Ax)
Γ ∪ {x ∶A} ⊢I x ∶ A

Γ ∪ {x ∶A} ⊢I t ∶B(→I) Γ ⊢I λx t ∶A→ B

Γ1 ⊢I t ∶A→ B Γ2 ⊢I u ∶A(→E)
Γ1 ∪ Γ2 ⊢I (t)u ∶B

Γ1 ⊢I t ∶ A Γ2 ⊢I u ∶B(∧I)
Γ1 ∪ Γ2 ⊢I ⟨t;u⟩ ∶ A ∧B

Γ ⊢I t ∶A ∧B(∧EL) Γ ⊢I π1t ∶A
Γ ⊢I A ∧B(∧ER) Γ ⊢I π2t ∶B

Γ ⊢I t ∶ A(∨IL) Γ ⊢I i1t ∶A ∨B
Γ ⊢I t ∶B(∨IR) Γ ⊢I i2t ∶A ∨B

20

4 Enriched λ-calculi

Γ1 ⊢I u ∶A→ C Γ2 ⊢I v ∶B → C Γ3 ⊢I t ∶A ∨B(∨E)
Γ1 ∪ Γ2 ∪ Γ3 ⊢I Ct(u∣v) ∶ C

Γ ⊢I t ∶ �(�E) Γ ⊢I ∇t ∶A

If we define ¬A asA→ � andA↔ B as (A→ B)∧(B → A) then it is very easy to see that we
can derive every deduction rule from propositional logic except for (ExMid) (and this rule is
not only hard to derive, it is in fact impossible to derive as we will see later on). Note that in
this setting, it is more natural to have � as a primitive and to define ¬ using→ and �.
As previously we can prove the following1:

Proposition 4.8:
Let t, u ∈ ΛI , Γ be a context and A ∈ TI . Let us assume that Γ ⊢I t ∶ A and t →⋆I u, then
Γ ⊢I u ∶ A.

Theorem4.9:
Let t ∈ ΛI , Γ be a context and A ∈ TI . If Γ ⊢I t ∶ A then t is strongly normalizable (for→I).

By a (rather horrible) discussion on the form of normal terms one can prove the following
statement which is symptomatic of intuitionistic logic (and which explains why this logic is
also referred to as constructive logic):

Proposition 4.10:
LetA1,A2 ∈ TI and t ∈ ΛI . Assume that ⊢I t ∶ A1 ∨A2 and t is normal. Then there exists u ∈ ΛI
and j ∈ {1,2} such that t = iju and ⊢I u ∶ Aj holds.

Corollary 4.11:
There is no t ∈ ΛI whose type in the empty context is A ∨ (A→ �).

If we call intuitionistic logic the logicwhose rules are the term-free version of⊢I , thenwe have
just proved thatA∨¬A is a tautology of classical logic that does not hold in intuitionistic logic.
What we can prove in intuitionistic logic is that Pierce’s law is equivalent to the excluded
middle and hence Pierce’s law does not hold either in intuitionistic logic.

4.3 Classical propositional logic
If we want to recover full classical logic we just need to add that a rule that says that A can
be deduced from ¬¬A.
As the system of connectives {→,�} is complete, to keep things minimal, we will only con-
sider those two basic type constructions and define the rest of the connectives using them.

Definition 4.12:
Let V be a (countable) set of variables and A = V ∪ {(,), λ,E}. The set LP is the smallest set of
words on A such that:
1The proofs are essentially variations on the previous proofs. They becomemore annoying to write as there are
many more cases.

21

4 Enriched λ-calculi

• V ⊆ LP ;

• If t and u ∈ LP , then (t)u ∈ LP ;

• If x ∈ V and t ∈ LP , then λx t ∈ LP .

• If t ∈ LP , then Et ∈ LP ;

As for the terms in L, we can define a notion of α-conversion and we define ΛP = LP/ ≡α.
The construction Et corresponds to what is called a continuation operator. The reduction
rule associated to E has a computational meaning but it is somewhat complicated to explain.
We consider the following reduction rules:

(β) (λx t)u→β tu/x;

(η) λx (t)x→η t if x ∉ fvar(t);

(E) (Et)u→E Eλf (t)λg (f)(g)u where f, g ∉ fvar(t) ∪ fvar(u);

(Eη) Eλf (f)t→Eη t if f ∉ fvar(t).

In fact, we could have introduced the η-reduction rule from the beginning. It corresponds
to some natural simplification of proof but it is not really useful and does make things a little
more complicated. However, in λE-calculus, products and sums do not work as well if we
don’t add this new rule and the corresponding rule associated with E .
We define a notion of reduction t →P u by allowing any of the above reductions to happen
anywhere in t:

Definition 4.13:
Let t and u ∈ ΛP . We define t→P u by induction on t:

• If t→◻ u where ◻ ∈ {β, η,E ,Eη}, then t→P u;

• If t →P u then for x ∈ V , and s ∈ ΛP λx t →P λxu, (t)s →P (u)s, (s)t →P (s)u and
Et→P Eu.

Definition 4.14:
Let W be a set (disjoint from V the set of variables). The set TP is the smallest set of words on
W ∪ {(,),→,�} (where the union is supposed to be disjoint) such that:

• W ⊆ TP ;

• � ∈ TP

• IfA andB ∈ TP , then (A→ B) ∈ TP .

And we consider the following typing rules:

(Ax)
Γ ∪ {x ∶A} ⊢ x ∶A

22

4 Enriched λ-calculi

Γ ∪ {x ∶A} ⊢ t ∶B
(→I) Γ ⊢ λx t ∶A→ B

Γ1 ⊢ t ∶A→ B Γ2 ⊢ u ∶A(→E)
Γ1 ∪ Γ2 ⊢ (t)u ∶B

Γ ⊢ t ∶ �(�E) Γ ⊢ ∇t ∶A
Γ ⊢ t ∶ (A→ �)→ �

(¬¬E) Γ ⊢ Et ∶A

As previously we can prove the following:

Proposition 4.15:
Let t, u ∈ ΛP , Γ be a context and A ∈ TP . Let us assume that Γ ⊢P t ∶ A and t →⋆P u, then
Γ ⊢P u ∶ A.

Theorem4.16:
Let t ∈ ΛP , Γ be a context andA ∈ TP . If Γ ⊢P t ∶ A then t is strongly normalizable (for→P).

If we want to recover all of propositional logic, we should redefine all the other connectives
and their associated constructors. As previously, we define ¬A as A → �. Also, although
we do have � as logical connective/type constructor, we are missing the constructor∇u that
transforms a proof of � into a proof of any typeA. Let∇u = Eλxu for some x ∉ fvar(u). Let
us check that this term is typed the right way, i.e. if Γ ⊢P u ∶ � for some context Γ, then we
should have Γ ⊢P ∇u ∶ A for anyA ∈ TP :

⋮
Γ ∪ {x ∶ A→ �} ⊢P u ∶ �

(→I)
Γ ⊢P λxu ∶ (A→ �)→ �

(¬¬E) Γ ⊢P Eλxu ∶ A

where the first line comes fromweakening the context (we proved this result for simply type
λ-calculus, but it also holds here).
Let us also check that this term reduces in the intented way:

(∇u)v = (Eλxu)v
→E Eλf (λxu)λg (f)(g)u
→β Eλf u ≡α λxu = ∇u.

Let us now take care of the conjonction. LetA∧B = (A→ (B → �))→ �, ⟨t;u⟩ = λf ((f)t)u,
π1t = Eλf (t)λxλy (f)x and π2t = Eλf (t)λxλy (f)y. Let us check that we get the right
typing rules. Assumong Γ1 ⊢P t ∶ A and Γ2 ⊢P u ∶ B hold, then:

(Ax)
f ∶ A→ (B → �) ⊢P f ∶ A→ (B → �)

⋮
Γ1 ⊢P t ∶ A

Γ1 ∪ {f ∶ A→ (B → �)} ⊢P (f)t ∶ B → �
⋮

Γ2 ⊢P u ∶ B
Γ1 ∪ Γ2 ∪ {f ∶ A→ (B → �)} ⊢P ((f)t)u ∶ �(→I)

Γ1 ∪ Γ2 ⊢P λf ((f)t)u ∶ (A→ (B → �))→ � = A ∧B

Now assume that Γ ⊢ t ∶ A ∧B = (A→ (B → �))→ � holds. We have:

23

4 Enriched λ-calculi

(Ax)
f ∶ A→ � ⊢P f ∶ A→ �

(Ax)
{x ∶ A,y ∶ B} ⊢P a ∶ A

(→E)
Γ ∪ {f ∶ A→ �, x ∶ A,y ∶ B} ⊢P (f)x ∶ �(→I)
Γ ∪ {f ∶ A→ �, x ∶ A} ⊢P λy (f)x ∶ B → �

(→I)
Γ ∪ {f ∶ A→ �} ⊢P λxλy (f)x ∶ A→ (B → �)

and:

⋮
Γ ⊢P t ∶ (A→ (B → �))→ � Γ ∪ {f ∶ A→ �} ⊢P λxλy (f)x ∶ A→ (B → �)

(→E)
Γ ∪ {f ∶ A→ �} ⊢P (t)λxλy (f)x ∶ �(→I)
Γ ⊢P λf (t)λxλy (f)x ∶ (A→ �)→ �¬¬E

Γ ⊢P Eλf (t)λxλy (f)x ∶ A

The term π2t is typed in a similar way.
Let us now check that we have the right reduction:

π1⟨t;u⟩ = Eλf (λf ((f)t)u)λxλy (f)x
→β Eλf ((λxλy (f)x)t)u
→β Eλf (λy (f)t)u
→β Eλf (f)t
→Eη t.

We have the symmetric reduction for π2⟨t;u⟩.
Conjonctions can also be recovered. Define A ∨ B = (A → �) → ((B → �) → �), i1t =
λfλg (f)t, i2t = λfλg (g)t and Ct(u∣v) = Eλh ((t)λa (h)(u)a)λb (h)(v)b. We can check
again that all these terms are typed correctly. Let us just show that we have the right reduc-
tion:

Ci1t(u∣v) = Eλh ((λfλg (f)t)λa (h)(u)a)λb (h)(v)b
→β Eλh (λg (λa (h)(u)a)t)λb (h)(v)b
→β Eλh (λa (h)(u)a)t
→β Eλh (h)(u)t
→Eη (u)t.

One last remark, the excludedmiddle is valid in classical propositional logic and so some λE-
term should have type A ∨ ¬A = (A → �) → (((A → �) → �) → �). The term λfλg (g)f is
such a term and here is a derivation proving it:

(Ax)
g ∶ (A→ �)→ � ⊢P g ∶ (A→ �)→ � (Ax)

f ∶ A→ � ⊢P g ∶ A→ �
{f ∶ A→ �, g ∶ (A→ �)→ � ⊢P (g)f ∶ �(→I)

f ∶ A→ � ⊢P λg (g)f ∶ ((A→ �)→ �)→ �
(→I) ⊢P λfλg (g)f ∶ (A→ �)→ (((A→ �)→ �)→ �)

24

4 Enriched λ-calculi

4.4 System F
The last possible approach that will be discussed here is rather orthogonal to the two previ-
ous ones. Instead of enriching our λ-calculus with new construction to allow for new type
construction, we will (as we did with intersection types) simply enrich the typing system and
hence the corresponding logic. The main difference with intersection types is that the en-
richment that we will consider nowwill correspond to an enrichement of propositional logic
thatwe have not considered so far: quantification over propositional variables (often referred
two as second order logic). From a programming language perspective it corresponds to type
polymorphism.
First we need to define the types of system F .

Definition 4.17:
Let W be a set (disjoint from V the set of variables). The set TF is the smallest set of words on
W ∪ {(,),→,∀} (where the union is supposed to be disjoint) such that:

• W ⊆ TF ;

• IfA andB ∈ TF , then (A→ B) ∈ TF .

• IfX ∈W and sA ∈ TF , then ∀XA ∈ TF .

As for terms, we can define anotion ofα-conversion on types (also denoted≡α), andwedefine
TF = TF/ ≡α. We can also define a notion of substitution on TF that wewill denote byAB/X .
If Γ = {(xi ∶ Ai) ∶ i ∈ I} is a context, we denote by fvar(Γ) the set ⋃i∈I fvar(Ai).
We keep the old typing rules:

(Ax)
Γ ∪ {x ∶A} ⊢F x ∶A

Γ ∪ {x ∶A} ⊢F t ∶B
(→I) Γ ⊢F λx t ∶A→ B

Γ1 ⊢F t ∶A→ B Γ2 ⊢F u ∶A(→E)
Γ1 ∪ Γ2 ⊢F (t)u ∶B

And we add two new rules:

Γ ⊢c Ft ∶ A X ∉ fvar(Γ)
(∀I) Γ ⊢c Ft ∶ ∀XA

Γ ⊢F t ∶ ∀XA(∀E) Γ ⊢F t ∶ AB/X

Although the proof become more complicated (especially the proof of Theorem (4.19)), we
can prove the following:

Proposition 4.18:
Let t, u ∈ Λ, Γ be a context and A ∈ TF . Let us assume that Γ ⊢F t ∶ A and t →⋆P u, then
Γ ⊢F u ∶ A.

Theorem4.19:
Let t ∈ Λ, Γ be a context and A ∈ TF . If Γ ⊢F t ∶ A then t is strongly normalizable (for→β).

We can also encode �, ∧ and ∨ in system F . The encodings are quite similar to those in
λE-calculus, but the underlying λ-terms are somewhat more reasonnable.
We define � = ∀XX . Assuming that Γ ⊢ t ∶ � = ∀XX , we have:

25

4 Enriched λ-calculi

Γ ⊢F t ∶ ∀XX(∀E) Γ ⊢F t ∶ A

WedefineA∧B = ∀X (A→ (B →X))→X (whereX is free inA andB), ⟨t;u⟩ = ∀f (f(t))u,
π1t = (t)λaλba and π1t = (t)λaλb b. Let us check that these terms have the right type.
Assume that Γ1 ⊢F t ∶ A and Γ2 ⊢F u ∶ t

(Ax)
f ∶ A→ (B →X) ⊢F f ∶ A→ (B →X)

⋮
Γ1 ⊢F t ∶ A

Γ1 ∪ {f ∶ A→ (B →X)} ⊢F (f)t ∶ B →X

⋮
Γ2 ⊢F u ∶ B

Γ1 ∪ Γ2 ∪ {f ∶ A→ (B →X)} ⊢F ((f)t)u ∶X(→I)
Γ1 ∪ Γ2 ⊢F λf ((f)t)u ∶ (A→ (B →X))→X X ∉ Γ1 ∪ Γ2(∀E)

Γ1 ∪ Γ2 ⊢F λf ((f)t)u ∶ ∀X (A→ (B →X))→X = A ∧B

Now assume that Γ ⊢ t ∶ A ∧B = (A→ (B → �)) holds. We have:

⋮
Γ ⊢F t ∶ ∀X (A→ (B →X))→X

(∀E)
Γ ⊢F t ∶ (A→ (B → A))→ A

(Ax)
Γ ∪ {a ∶ A, b ∶ B} ⊢F a ∶ A

(→I)
Γ ∪ {a ∶ A} ⊢F λba ∶ B → A

(→I)
Γ ⊢F λaλba ∶ A→ (B → A)

(→E)
Γ ⊢F (t)λaλba ∶ A

The term π2t is typed in a similar way.
Let us also check that we have the correct reduction:

π1⟨t;u⟩ = (λf ((f)t)u)λaλba
→β ((λaλba)t)u
→β (λb t)u
→β t

We have the symmetric reduction for π2⟨t;u⟩.
Finally, we define A ∨B = ∀X (A → X) → ((B → X) → X) (whereX is free in A and B),
i1t = λfλg (f)t, i2t = λfλg (g)t and Ct(u∣v) = ((t)u)v. We can check again that all these
terms are typed correctly and that we have the corresponding reduction.
However, the logic associated to system F should once again more precisely be called “In-
tuitionistic second order propositinal logic” as the excluded middle is not valid in this logic.
In fact the following proposition is also true in system F (and the fact that no term has type
A ∨ ¬A in system F follows immediately):

Proposition 4.20:
Let t ∈ Λ be normal, if there exists types A1, A2 ∈ TF such that ⊢F t ∶ A1 ∨A2, then there exists
u ∈ Λ and j ∈ {1,2} such that t = iju and ⊢F u ∶ Aj .

26

References

References
[Kri93] J.-L. Krivine. Lambda-calculus, types and models. Ellis Horwood Series in Computers

andTheir Applications. Translated from the 1990 French original by RenéCori. Ellis
Horwood, New York; Masson, Paris, 1993, pp. viii+180.

27

	Substitution and alpha-equivalence
	beta-reduction
	Simply typed lambda-calculus
	Enriched lambda-calculi
	Intersection types
	Intuitionistic propositional logic
	Classical propositional logic
	System F

	References

