
Silvain Rideau silvain.rideau@berkeley.edu

1091 Evans www.normalesup.org/~srideau/eng/teaching

Solutions to the review problems
December 10th

Problem 1 (Model theory) :

1. Let us �rst prove that b) implies a). Let us assume that A is an elementary sub-

structure ofM and let ϕ, ai and m be as in a). We haveM ⊧ ∃x0ϕ(x0, a1, . . . , an)
and hence A ⊧ ∃x0ϕ(x0, a1, . . . , an). In particular, there exists a0 ∈ A such that

A ⊧ ϕ(a0, a1, . . . , an). But because A is an elementary substructure ofM, we also

haveM ⊧ ϕ(a0, a1, . . . , an).
Let us now prove a) implies b). Let A ⩽M verify a). We prove by induction on

ϕ that for all a1, . . . an ∈ A, A ⊧ (a1, . . . , an) if and only ifM ⊧ ϕ(a1, . . . , an). If ϕ
is atomic, this is an immediate consequence of the fact that A is a substructure of

M. If ϕ = ¬ψ, then A ⊧ ϕ(a1, . . . , an) if and only if A ⊭ ϕ(a1, . . . , an) (we are using
the induction), if and only ifM ⊭ ϕ(a1, . . . , an), if and only ifM ⊧ ϕ(a1, . . . , an).
If ϕ = ϕ1 ∧ ϕ2, then A ⊧ ϕ(a1, . . . , an) if and only if A ⊧ ϕ1(a1, . . . , an) and

A ⊧ ϕ2(a1, . . . , an), if and only ifM ⊭ ϕ1(a1, . . . , an) andM ⊧ ϕ2(a1, . . . , an) (we
are using the induction), if and only ifM ⊧ ϕ(a1, . . . , an).
Let us now assume that ϕ = ∃x0ψ(x0, x1, . . . , xn). We have A ⊧ ϕ(a1, . . . , an) if
and only if there exists a0 ∈ A such that A ⊧ ψ(a0, a1, . . . , an), if and only if there

exists a0 ∈ A such thatM ⊧ ψ(a0, a1, . . . , an) (we are using the induction), if and

only if there exists m ∈M such thatM ⊧ ψ(m,a1, . . . , an) (we are using hypothesis
a)), if and only ifM ⊧ ϕ(a1, . . . , an).
This concludes the proof as all other connectives and quanti�ers can be expressed

using these three.

2. Recall that, in L(M), we denote the constant associated to a ∈M by a.

Let us prove that a) implies b). Let f be as in a) and let N ⋆ be the enrichment of

N to L(M) such that aN
⋆ = f(a). Let ϕ(a1, . . . , an) ∈ Del(M) (where ϕ is an L-

formula). By de�nitionM⋆ ⊧ ϕ(a1, . . . , an) and henceM ⊧ ϕ(a1, . . . , an). Because
f is an isosmorphism on its image, f(M) ⊧ ϕ(f(a1), . . . , f(an)) and because f(M)
is an elemtary substructure of N , we also have N ⊧ ϕ(f(a1), . . . , f(an)) and hence

N ⊧ ϕ(a1, . . . , an).
Let now N ⋆ be as in b). We de�ne f ∶M→ N by f(a) = aN . Let ϕ(x1, . . . , xn) be
an L-formula and a1, . . . , an ∈M . We have N ⊧ ϕ(f(a1), . . . , f(an)) if and only if,

N ⊧ ϕ(a1, . . . , an) (by de�nition of f), if and only if ϕ(a1, . . . , an) ∈ Del(M) (one
implication is by hypothesis b), the other by hypothesis b) applied to ¬ϕ), if and
only ifM ⊧ ϕ(a1, . . . , an) if and only if f(M) ⊧ ϕ(f(a1), . . . , f(an)). We have just

proved that f(M) is an elementary substructure of N .

3. By compactness, it su�ces to show that every �nite T0 ⊆ Del(M) ∪ Del(N ) is
consistent. Assume one of them is not. We have T0 ⊆ Del(M) ∪ {ϕi(a1, . . . , an) ∶
0 < i < k} where aj ∈ N and ϕi(a1, . . . , an) ∈ Del(N ). Let ψ = ⋀0<i<k ϕi, then

ψ(a1, . . . , an) ∈ Del(N ) and Del(M) ∪ {ψ(a1, . . . , an)} is inconsistent and thus

Del(M) ⊢ ¬ψ(a1, . . . , an). Because the constants ai do not appear in Del(M) (that
is why we had to be careful to choose distinct new constants in L(M) and L(N)), we
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haveDel(M) ⊢ ∀x1 . . .∀xn ¬ψ(x1, . . . , xn) and henceM ⊧ ∀x1 . . .∀xn ¬ψ(x1, . . . , xn).
ButM ≡ N and ∀x1 . . .∀xn ¬ψ(x1, . . . , xn) is an L-sentence, soN ⊧ ∀x1 . . .∀xn ¬ψ(x1, . . . , xn),
in particularM ⊧ ¬ψ(a1, . . . , an), a contradiction with that fact that ψ(a1, . . . , an) ∈
Del(N ).
Therefore, the theory Del(M) ∪Del(N ) is consistent.

4. Let us �rst prove that b) implies a). Let O be as in b) and ϕ be an L-sentence.
We haveM ⊧ ϕ if and only if O ⊧ ϕ if and only if N ⊧ ϕ and henceM ≡ N .

Let us now prove that a) implies b). Let us assume a). By the previous question,

Del(M) ∪Del(N ) is consistent. Let O ⊧ Del(M) ∪Del(N ). By question 2, there

exists elementary embeddings f ∶M→ O and g ∶ N → O.

Problem 2 (λ-calculus) :

1. Let t be a normal λ-term such that ⊢ t ∶ A→ A. The last rule to be applied in the

derivation of ⊢ t ∶ A→ A cannot be (Ax) as the context is empty. Let us assume it

is (→E) and hence t is an application. Because t is normal, there exists a variable

x ∈ V and normal terms t1, . . . tn such that t = (. . . ((x)t1) . . .)tn. But we saw in

class that if Γ ⊢ t, fvar(t) ⊆ fvar(Γ). But here Γ = ∅ and hence t cannot contain a

free variable. So the last rule cannot be (→E) and it has to be (→I).
It follows that t = ∀xu and that x ∶ A ⊢ u ∶ A holds. Because A is not of the form

B → C, the last applied rule to prove x ∶ A ⊢ u ∶ A cannot be (→I). Be cause u
is normal and does not begin with a λ, it is of the form u = (. . . ((y)t1) . . .)tn for

some y ∈ V and ti ∈ Λ. So the n previous rules applied have to be (→E) and there

are types A1, . . .An such that x ∶ A ⊢ y ∶ A1 → (. . . → (An → A) . . .) holds. But the
only applicable rule would be (Ax) which only applies if y = x, n = 0 and u = x. So
t = λxx.

2. Let t be a normal λ-term such that ⊢ t ∶ A→ A. By similar considerations as above,

t = λxu and x ∶ A ⊢ u ∶ A → A holds. Let us assume that u = (. . . ((y)t1) . . .)tn for

some y ∈ V and ti ∈ Λ. As above, there are types A1, . . .An such that x ∶ A ⊢ y ∶
A1 → (. . . → (An → (A → A)) . . .) holds. But that typing statement cannot hold

because A ≠ A1 → (. . .→ (An → (A→ A)) . . .) for any choice of n and Ai.

It follows that the last rule applied is (→I), that u = λy v and that {x ∶ A,y ∶ A} ⊢
v ∶ A holds. The last applied rule cannot be (→I) because A is not of the form

B → C. So v = (. . . ((z)t1) . . .)tn for some z ∈ V and ti ∈ Λ. As above, there must

exist types Ai such that {x ∶ A,y ∶ A} ⊢ z ∶ A1 → (. . .→ (An → (A→ A)) . . .) holds.
The only applicable rule is (Ax) and hence z = x or y and n = 0. We have proved

that t = λxλy x or t = λxλy y.

Problem 3 (Boolean algebras) :

1. Let us �rst prove that a) implies b). Let X ⊆ A whose lower upper bound is 1.
Then because f is complete, the lower upper bound of f(X) is f(1) = 1.

Let us now prove that b) implies a). Let X ⊆ A whose upper bound in A is a. Let
Y =X ∪{ac}. Any upper bound c of Y is an upper bound of X so a ⩽ c. Moroever,

because ac ∈ Y , ac ⩽ c and hence c = 1. By hypothesis a), the lower upper bound

of f(Y ) = f(X) ∩ {f(a)c} is 1.
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For all all x ∈ X, x ⩽ a and hence f(x) ⩽ f(a). It follows that f(a) is an upper

bound of X. Moreover, let c ∈ B be any upper bound of f(X), then c∪f(a)c is an
upper bound of f(Y ) and hence c ∪ f(a)c = 1. Applying De Morgan's law, we get

that cc∩f(a) = 0 and hence (1+c) ⋅f(a) = f(a)+c ⋅f(a) = 0, i.e. c ⋅f(a) = f(a) and
f(a) ⩽ c. So f(a) is an upper bound that is smaller that any other upper bound.

It is the lower upper bound of f(X).

2. Let us �rst prove that a) implies b). Let I be a complete ideal and f ∶ A→ A/I be

the canonical projection. Then f−1(0) = I and let us show that f is complete. Let

X ⊆ A whose lower upper is 1 and let f(c) be an upper bound of f(X). For all

x ∈ X, f(x) ⩽ f(c) and thus f(x ∩ cc) = f(x) ∩ f(c)c = 0, i.e. x ∩ cc ∈ I. Moreover,

Let b be some upper bound of {x ∩ cc ∶ x ∈ X} (we want to show that ○c ⩽ b). For
all x ∈ X, we have b ∪ c ⩾ (x ∩ cc) ∪ (x ∩ c) = x ∩ (xc ∪ c) = x. So b ∪ c is an upper

bound of X and hence b ∪ c = 1. It follows immediately that b ⩾ cc. Moreover cc is

clearly an upper bound of {x ∩ cc ∶ x ∈X}, so it is the lower upper bound.

But we proved earlier that {x ∩ cc ∶ x ∈ X} ⊆ I and hence, as I is complete, cc ∈ I,
i.e. f(c)c = 0 and f(c) = 1.

Let us now prove that b) implies a). Let f be as in b) and let X ⊆ I whose lower

upper bound is a ∈ A. By completeness of f , f(a) is the lower upper bound of

f(X) = {0} and f(a) = 0, i.e. a ∈ I.

3. Let us �rst prove it is closed under addition. Let a, b ∈ ⋂j Ij . We have a+ b ∈ Ij for
all j and hence a+ b ∈ ⋂j Ij . Let now a ∈ A and b ∈ ⋂j Ij . For all j, we have a ⋅ b ∈ Ij
and hence a ⋅ b ∈ ⋂j Ij . Moreover 1 ∉ Ij for all j so 1 ∉ ⋂j Ij and 0 ∈ Ij for all j so
0 ∈ ⋂j Ij . Finally, let X ⊆ ⋂j Ij , then the lower upper bound of X is in each of the

Ij and hence in ⋂j Ij .

4. Let J = {I ⊆ A ∶ I is a complete ideal and X ⊆ I} be non empty and I0 = ⋂I∈J I.
By the previous question I0 is a complete ideal. It clearly contains X and it is

contained in any complete ideal that contains X, so it is the smallest element of J .

5. First of allN is an ideal. If a and c ∈ N then for all b ∈ I, (a+b)⋅c = a⋅c+b⋅c = 0+0 = 0.
If a ∈ A and c ∈ N , then a ⋅ c ⋅ b = a ⋅ 0 = 0. Moreover 0 ⋅ b = 0 for all b ∈ I so 0 ∈ N
and if 1 ∈ N , then for all b ∈ I, b = b ∩ 1 = 0, contradicting the fact that I ≠ 0.

Let us now prove that N is complete. Let X ⊆ N whose lower upper bound in A
is a. Let b ∈ I, we have to show that a ∩ b = 0. For all x ∈ X, x ∩ b = 0 and hence

x ⩽ bc. It follows that bc is an upper bound of X and hence a ⩽ b, i.e. a ∩ b = 0.

Let b ∈ N ∩ I. We have b = b ∩ b = 0. There remains to show that there is no

(proper1) complete ideal containing I ∪N . Let us �rst show that le lower uppper

bound of I ∪N is 1. Let a ∈ A be an upper bound of I ∪N , then for all b ∈ I, b ⩽ a
and hence b∩ ac = 0 so ac ∈ N and hence ac ⩽ a, i.e. 1+ a = (1+ a)a = a+ a = 0 and

a = 1.

If there existed a complete ideal J containing I ∪N , it would contain 1, a contra-

diction.

1Remeber that we assumed all ideal s to be proper.
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