Solutions to the review problems

December 10th

Problem 1 (Model theory) :

1. Let us first prove that b) implies a). Let us assume that \mathcal{A} is an elementary substructure of \mathcal{M} and let φ , a_i and m be as in a). We have $\mathcal{M} \models \exists x_0 \varphi(x_0, a_1, \ldots, a_n)$ and hence $\mathcal{A} \models \exists x_0 \varphi(x_0, a_1, \ldots, a_n)$. In particular, there exists $a_0 \in \mathcal{A}$ such that $\mathcal{A} \models \varphi(a_0, a_1, \ldots, a_n)$. But because \mathcal{A} is an elementary substructure of \mathcal{M} , we also have $\mathcal{M} \models \varphi(a_0, a_1, \ldots, a_n)$.

Let us now prove a) implies b). Let $\mathcal{A} \leq \mathcal{M}$ verify a). We prove by induction on φ that for all $a_1, \ldots, a_n \in \mathcal{A}$, $\mathcal{A} \models (a_1, \ldots, a_n)$ if and only if $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$. If φ is atomic, this is an immediate consequence of the fact that \mathcal{A} is a substructure of \mathcal{M} . If $\varphi = \neg \psi$, then $\mathcal{A} \models \varphi(a_1, \ldots, a_n)$ if and only if $\mathcal{A} \not\models \varphi(a_1, \ldots, a_n)$ (we are using the induction), if and only if $\mathcal{M} \not\models \varphi(a_1, \ldots, a_n)$, if and only if $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$. If $\varphi = \varphi_1 \land \varphi_2$, then $\mathcal{A} \models \varphi(a_1, \ldots, a_n)$ if and only if $\mathcal{A} \models \varphi_1(a_1, \ldots, a_n)$ and $\mathcal{A} \models \varphi_2(a_1, \ldots, a_n)$, if and only if $\mathcal{M} \not\models \varphi_1(a_1, \ldots, a_n)$ (we are using the induction), if and only if $\mathcal{M} \not\models \varphi_1(a_1, \ldots, a_n)$ and $\mathcal{M} \models \varphi_2(a_1, \ldots, a_n)$ (we are using the induction), if and only if $\mathcal{M} \not\models \varphi_1(a_1, \ldots, a_n)$ and $\mathcal{M} \models \varphi_2(a_1, \ldots, a_n)$ (we are using the induction), if and only if $\mathcal{M} \not\models \varphi(a_1, \ldots, a_n)$.

Let us now assume that $\varphi = \exists x_0 \psi(x_0, x_1, \dots, x_n)$. We have $\mathcal{A} \models \varphi(a_1, \dots, a_n)$ if and only if there exists $a_0 \in A$ such that $\mathcal{A} \models \psi(a_0, a_1, \dots, a_n)$, if and only if there exists $a_0 \in A$ such that $\mathcal{M} \models \psi(a_0, a_1, \dots, a_n)$ (we are using the induction), if and only if there exists $m \in M$ such that $\mathcal{M} \models \psi(m, a_1, \dots, a_n)$ (we are using hypothesis a)), if and only if $\mathcal{M} \models \varphi(a_1, \dots, a_n)$.

This concludes the proof as all other connectives and quantifiers can be expressed using these three.

2. Recall that, in $\mathcal{L}(M)$, we denote the constant associated to $a \in M$ by \underline{a} .

Let us prove that a) implies b). Let f be as in a) and let \mathcal{N}^* be the enrichment of \mathcal{N} to $\mathcal{L}(\mathcal{M})$ such that $\underline{a}^{\mathcal{N}^*} = f(a)$. Let $\varphi(\underline{a}_1, \ldots, \underline{a}_n) \in \mathcal{D}^{\mathrm{el}}(\mathcal{M})$ (where φ is an \mathcal{L} -formula). By definition $\mathcal{M}^* \models \varphi(\underline{a}_1, \ldots, \underline{a}_n)$ and hence $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$. Because f is an isosmorphism on its image, $f(\mathcal{M}) \models \varphi(f(a_1), \ldots, f(a_n))$ and because $f(\mathcal{M})$ is an elemetary substructure of \mathcal{N} , we also have $\mathcal{N} \models \varphi(f(a_1), \ldots, f(a_n))$ and hence $\mathcal{N} \models \varphi(\underline{a}_1, \ldots, \underline{a}_n)$.

Let now \mathcal{N}^{\star} be as in b). We define $f: \mathcal{M} \to \mathcal{N}$ by $f(a) = \underline{a}^{\mathcal{N}}$. Let $\varphi(x_1, \ldots, x_n)$ be an \mathcal{L} -formula and $a_1, \ldots, a_n \in \mathcal{M}$. We have $\mathcal{N} \models \varphi(f(a_1), \ldots, f(a_n))$ if and only if, $\mathcal{N} \models \varphi(\underline{a}_1, \ldots, \underline{a}_n)$ (by definition of f), if and only if $\varphi(\underline{a}_1, \ldots, \underline{a}_n) \in \mathcal{D}^{\mathrm{el}}(\mathcal{M})$ (one implication is by hypothesis b), the other by hypothesis b) applied to $\neg \varphi$), if and only if $\mathcal{M} \models \varphi(a_1, \ldots, a_n)$ if and only if $f(\mathcal{M}) \models \varphi(f(a_1), \ldots, f(a_n))$. We have just proved that $f(\mathcal{M})$ is an elementary substructure of \mathcal{N} .

3. By compactness, it suffices to show that every finite $T_0 \subseteq \mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ is consistent. Assume one of them is not. We have $T_0 \subseteq \mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \{\varphi_i(\underline{a}_1, \ldots, \underline{a}_n) :$ $0 < i < k\}$ where $a_j \in N$ and $\varphi_i(\underline{a}_1, \ldots, \underline{a}_n) \in \mathcal{D}^{\mathrm{el}}(\mathcal{N})$. Let $\psi = \bigwedge_{0 < i < k} \varphi_i$, then $\psi(\underline{a}_1, \ldots, \underline{a}_n) \in \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ and $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \{\psi(\underline{a}_1, \ldots, \underline{a}_n)\}$ is inconsistent and thus $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \vdash \neg \psi(\underline{a}_1, \ldots, \underline{a}_n)$. Because the constants \underline{a}_i do not appear in $\mathcal{D}^{\mathrm{el}}(\mathcal{M})$ (that is why we had to be careful to choose distinct new constants in $\mathcal{L}(M)$ and $\mathcal{L}(N)$), we have $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \vdash \forall x_1 \dots \forall x_n \neg \psi(x_1, \dots, x_n)$ and hence $\mathcal{M} \vDash \forall x_1 \dots \forall x_n \neg \psi(x_1, \dots, x_n)$. But $\mathcal{M} \equiv \mathcal{N}$ and $\forall x_1 \dots \forall x_n \neg \psi(x_1, \dots, x_n)$ is an \mathcal{L} -sentence, so $\mathcal{N} \vDash \forall x_1 \dots \forall x_n \neg \psi(x_1, \dots, x_n)$, in particular $\mathcal{M} \vDash \neg \psi(a_1, \dots, a_n)$, a contradiction with that fact that $\psi(\underline{a}_1, \dots, \underline{a}_n) \in \mathcal{D}^{\mathrm{el}}(\mathcal{N})$.

Therefore, the theory $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ is consistent.

4. Let us first prove that b) implies a). Let \mathcal{O} be as in b) and φ be an \mathcal{L} -sentence. We have $\mathcal{M} \models \varphi$ if and only if $\mathcal{O} \models \varphi$ if and only if $\mathcal{N} \models \varphi$ and hence $\mathcal{M} \equiv \mathcal{N}$.

Let us now prove that a) implies b). Let us assume a). By the previous question, $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ is consistent. Let $\mathcal{O} \models \mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\mathrm{el}}(\mathcal{N})$. By question 2, there exists elementary embeddings $f : \mathcal{M} \to \mathcal{O}$ and $g : \mathcal{N} \to \mathcal{O}$.

Problem 2 (λ -calculus) :

1. Let t be a normal λ -term such that $\vdash t : A \to A$. The last rule to be applied in the derivation of $\vdash t : A \to A$ cannot be (Ax) as the context is empty. Let us assume it is (\to_E) and hence t is an application. Because t is normal, there exists a variable $x \in V$ and normal terms $t_1, \ldots t_n$ such that $t = (\ldots ((x)t_1)\ldots)t_n$. But we saw in class that if $\Gamma \vdash t$, fvar $(t) \subseteq$ fvar (Γ) . But here $\Gamma = \emptyset$ and hence t cannot contain a free variable. So the last rule cannot be (\to_E) and it has to be (\to_I) .

It follows that $t = \forall x \, u$ and that $x : A \vdash u : A$ holds. Because A is not of the form $B \to C$, the last applied rule to prove $x : A \vdash u : A$ cannot be (\to_I) . Be cause u is normal and does not begin with a λ , it is of the form $u = (\dots ((y)t_1)\dots)t_n$ for some $y \in V$ and $t_i \in \Lambda$. So the n previous rules applied have to be (\to_E) and there are types $A_1, \dots A_n$ such that $x : A \vdash y : A_1 \to (\dots \to (A_n \to A)\dots)$ holds. But the only applicable rule would be (Ax) which only applies if y = x, n = 0 and u = x. So $t = \lambda x \, x$.

2. Let t be a normal λ -term such that $\vdash t : A \to A$. By similar considerations as above, $t = \lambda x u$ and $x : A \vdash u : A \to A$ holds. Let us assume that $u = (\dots ((y)t_1) \dots)t_n$ for some $y \in V$ and $t_i \in \Lambda$. As above, there are types A_1, \dots, A_n such that $x : A \vdash y :$ $A_1 \to (\dots \to (A_n \to (A \to A)) \dots)$ holds. But that typing statement cannot hold because $A \neq A_1 \to (\dots \to (A_n \to (A \to A)) \dots)$ for any choice of n and A_i .

It follows that the last rule applied is (\rightarrow_I) , that $u = \lambda y v$ and that $\{x : A, y : A\} \vdash v : A$ holds. The last applied rule cannot be (\rightarrow_I) because A is not of the form $B \rightarrow C$. So $v = (\dots ((z)t_1)\dots)t_n$ for some $z \in V$ and $t_i \in \Lambda$. As above, there must exist types A_i such that $\{x : A, y : A\} \vdash z : A_1 \rightarrow (\dots \rightarrow (A_n \rightarrow (A \rightarrow A))\dots)$ holds. The only applicable rule is (Ax) and hence z = x or y and n = 0. We have proved that $t = \lambda x \lambda y x$ or $t = \lambda x \lambda y y$.

Problem 3 (Boolean algebras) :

1. Let us first prove that a) implies b). Let $X \subseteq A$ whose lower upper bound is 1. Then because f is complete, the lower upper bound of f(X) is f(1) = 1.

Let us now prove that b) implies a). Let $X \subseteq A$ whose upper bound in A is a. Let $Y = X \cup \{a^{\mathbf{c}}\}$. Any upper bound c of Y is an upper bound of X so $a \leq c$. Moreover, because $a^{\mathbf{c}} \in Y$, $a^{\mathbf{c}} \leq c$ and hence c = 1. By hypothesis a), the lower upper bound of $f(Y) = f(X) \cap \{f(a)^{\mathbf{c}}\}$ is 1.

For all all $x \in X$, $x \leq a$ and hence $f(x) \leq f(a)$. It follows that f(a) is an upper bound of X. Moreover, let $c \in B$ be any upper bound of f(X), then $c \cup f(a)^{\mathbf{c}}$ is an upper bound of f(Y) and hence $c \cup f(a)^{\mathbf{c}} = 1$. Applying De Morgan's law, we get that $c^{\mathbf{c}} \cap f(a) = 0$ and hence $(1+c) \cdot f(a) = f(a) + c \cdot f(a) = 0$, i.e. $c \cdot f(a) = f(a)$ and $f(a) \leq c$. So f(a) is an upper bound that is smaller that any other upper bound. It is the lower upper bound of f(X).

2. Let us first prove that a) implies b). Let I be a complete ideal and $f: A \to A/I$ be the canonical projection. Then $f^{-1}(0) = I$ and let us show that f is complete. Let $X \subseteq A$ whose lower upper is 1 and let f(c) be an upper bound of f(X). For all $x \in X$, $f(x) \leq f(c)$ and thus $f(x \cap c^{\mathbf{c}}) = f(x) \cap f(c)^{\mathbf{c}} = 0$, i.e. $x \cap c^{\mathbf{c}} \in I$. Moreover, Let b be some upper bound of $\{x \cap c^{\mathbf{c}} : x \in X\}$ (we want to show that $\circ c \leq b$). For all $x \in X$, we have $b \cup c \geq (x \cap c^{\mathbf{c}}) \cup (x \cap c) = x \cap (x^{\mathbf{c}} \cup c) = x$. So $b \cup c$ is an upper bound of X and hence $b \cup c = 1$. It follows immediately that $b \geq c^{\mathbf{c}}$. Moreover $c^{\mathbf{c}}$ is clearly an upper bound of $\{x \cap c^{\mathbf{c}} : x \in X\}$, so it is the lower upper bound.

But we proved earlier that $\{x \cap c^{\mathbf{c}} : x \in X\} \subseteq I$ and hence, as I is complete, $c^{\mathbf{c}} \in I$, i.e. $f(c)^{\mathbf{c}} = 0$ and f(c) = 1.

Let us now prove that b) implies a). Let f be as in b) and let $X \subseteq I$ whose lower upper bound is $a \in A$. By completeness of f, f(a) is the lower upper bound of $f(X) = \{0\}$ and f(a) = 0, i.e. $a \in I$.

- 3. Let us first prove it is closed under addition. Let $a, b \in \bigcap_j I_j$. We have $a + b \in I_j$ for all j and hence $a + b \in \bigcap_j I_j$. Let now $a \in A$ and $b \in \bigcap_j I_j$. For all j, we have $a \cdot b \in I_j$ and hence $a \cdot b \in \bigcap_j I_j$. Moreover $1 \notin I_j$ for all j so $1 \notin \bigcap_j I_j$ and $0 \in I_j$ for all j so $0 \in \bigcap_j I_j$. Finally, let $X \subseteq \bigcap_j I_j$, then the lower upper bound of X is in each of the I_j and hence in $\bigcap_j I_j$.
- 4. Let $J = \{I \subseteq A : I \text{ is a complete ideal and } X \subseteq I\}$ be non empty and $I_0 = \bigcap_{I \in J} I$. By the previous question I_0 is a complete ideal. It clearly contains X and it is contained in any complete ideal that contains X, so it is the smallest element of J.
- 5. First of all N is an ideal. If a and $c \in N$ then for all $b \in I$, $(a+b) \cdot c = a \cdot c + b \cdot c = 0 + 0 = 0$. If $a \in A$ and $c \in N$, then $a \cdot c \cdot b = a \cdot 0 = 0$. Moreover $0 \cdot b = 0$ for all $b \in I$ so $0 \in N$ and if $1 \in N$, then for all $b \in I$, $b = b \cap 1 = 0$, contradicting the fact that $I \neq 0$.

Let us now prove that N is complete. Let $X \subseteq N$ whose lower upper bound in A is a. Let $b \in I$, we have to show that $a \cap b = 0$. For all $x \in X$, $x \cap b = 0$ and hence $x \leq b^{\mathbf{c}}$. It follows that $b^{\mathbf{c}}$ is an upper bound of X and hence $a \leq b$, i.e. $a \cap b = 0$.

Let $b \in N \cap I$. We have $b = b \cap b = 0$. There remains to show that there is no (proper¹) complete ideal containing $I \cup N$. Let us first show that le lower uppper bound of $I \cup N$ is 1. Let $a \in A$ be an upper bound of $I \cup N$, then for all $b \in I$, $b \leq a$ and hence $b \cap a^{\mathbf{c}} = 0$ so $a^{\mathbf{c}} \in N$ and hence $a^{\mathbf{c}} \leq a$, i.e. 1 + a = (1 + a)a = a + a = 0 and a = 1.

If there existed a complete ideal J containing $I\cup N,$ it would contain 1, a contradiction.

¹Remeber that we assumed all ideal s to be proper.