Solutions to the review problems

December 10th

Problem 1 (Model theory) :

1. Let us first prove that b) implies a). Let us assume that \mathcal{A} is an elementary substructure of \mathcal{M} and let φ, a_{i} and m be as in a). We have $\mathcal{M} \vDash \exists x_{0} \varphi\left(x_{0}, a_{1}, \ldots, a_{n}\right)$ and hence $\mathcal{A} \vDash \exists x_{0} \varphi\left(x_{0}, a_{1}, \ldots, a_{n}\right)$. In particular, there exists $a_{0} \in A$ such that $\mathcal{A} \vDash \varphi\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. But because \mathcal{A} is an elementary substructure of \mathcal{M}, we also have $\mathcal{M} \vDash \varphi\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.
Let us now prove a) implies b). Let $\mathcal{A} \leqslant \mathcal{M}$ verify a). We prove by induction on φ that for all $a_{1}, \ldots a_{n} \in A, \mathcal{A} \vDash\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$. If φ is atomic, this is an immediate consequence of the fact that \mathcal{A} is a substructure of \mathcal{M}. If $\varphi=\neg \psi$, then $\mathcal{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathcal{A} \nLeftarrow \varphi\left(a_{1}, \ldots, a_{n}\right)$ (we are using the induction), if and only if $\mathcal{M} \nRightarrow \varphi\left(a_{1}, \ldots, a_{n}\right)$, if and only if $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$. If $\varphi=\varphi_{1} \wedge \varphi_{2}$, then $\mathcal{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $\mathcal{A} \vDash \varphi_{1}\left(a_{1}, \ldots, a_{n}\right)$ and $\mathcal{A} \vDash \varphi_{2}\left(a_{1}, \ldots, a_{n}\right)$, if and only if $\mathcal{M} \not \vDash \varphi_{1}\left(a_{1}, \ldots, a_{n}\right)$ and $\mathcal{M} \vDash \varphi_{2}\left(a_{1}, \ldots, a_{n}\right)$ (we are using the induction), if and only if $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$.
Let us now assume that $\varphi=\exists x_{0} \psi\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. We have $\mathcal{A} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if there exists $a_{0} \in A$ such that $\mathcal{A} \vDash \psi\left(a_{0}, a_{1}, \ldots, a_{n}\right)$, if and only if there exists $a_{0} \in A$ such that $\mathcal{M} \vDash \psi\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ (we are using the induction), if and only if there exists $m \in M$ such that $\mathcal{M} \vDash \psi\left(m, a_{1}, \ldots, a_{n}\right)$ (we are using hypothesis a)), if and only if $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$.

This concludes the proof as all other connectives and quantifiers can be expressed using these three.
2. Recall that, in $\mathcal{L}(M)$, we denote the constant associated to $a \in M$ by \underline{a}.

Let us prove that a) implies b). Let f be as in a) and let \mathcal{N}^{\star} be the enrichment of \mathcal{N} to $\mathcal{L}(M)$ such that $\underline{a}^{\mathcal{N}^{\star}}=f(a)$. Let $\varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \in \mathcal{D}^{\text {el }}(\mathcal{M})$ (where φ is an \mathcal{L} formula). By definition $\mathcal{M}^{\star} \vDash \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$ and hence $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$. Because f is an isosmorphism on its image, $f(\mathcal{M}) \vDash \varphi\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$ and because $f(\mathcal{M})$ is an elemtary substructure of \mathcal{N}, we also have $\mathcal{N} \vDash \varphi\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$ and hence $\mathcal{N} \vDash \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$.
Let now \mathcal{N}^{\star} be as in b). We define $f: \mathcal{M} \rightarrow \mathcal{N}$ by $f(a)=\underline{a}^{\mathcal{N}}$. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be an \mathcal{L}-formula and $a_{1}, \ldots, a_{n} \in M$. We have $\mathcal{N} \vDash \varphi\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$ if and only if, $\mathcal{N} \vDash \varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$ (by definition of f), if and only if $\varphi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \in \mathcal{D}^{\mathrm{el}}(\mathcal{M})$ (one implication is by hypothesis b), the other by hypothesis b) applied to $\neg \varphi$), if and only if $\mathcal{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$ if and only if $f(\mathcal{M}) \vDash \varphi\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$. We have just proved that $f(\mathcal{M})$ is an elementary substructure of \mathcal{N}.
3. By compactness, it suffices to show that every finite $T_{0} \subseteq \mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ is consistent. Assume one of them is not. We have $T_{0} \subseteq \mathcal{D}^{\text {el }}(\mathcal{M}) \cup\left\{\varphi_{i}\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)\right.$: $0<i<k\}$ where $a_{j} \in N$ and $\varphi_{i}\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \in \mathcal{D}^{\mathrm{el}}(\mathcal{N})$. Let $\psi=\wedge_{0<i<k} \varphi_{i}$, then $\psi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \in \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ and $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup\left\{\psi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)\right\}$ is inconsistent and thus $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \vdash \neg \psi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right)$. Because the constants \underline{a}_{i} do not appear in $\mathcal{D}^{\mathrm{el}}(\mathcal{M})$ (that is why we had to be careful to choose distinct new constants in $\mathcal{L}(M)$ and $\mathcal{L}(N)$), we
have $\mathcal{D}^{\text {el }}(\mathcal{M}) \vdash \forall x_{1} \ldots \forall x_{n} \neg \psi\left(x_{1}, \ldots, x_{n}\right)$ and hence $\mathcal{M} \vDash \forall x_{1} \ldots \forall x_{n} \neg \psi\left(x_{1}, \ldots, x_{n}\right)$. But $\mathcal{M} \equiv \mathcal{N}$ and $\forall x_{1} \ldots \forall x_{n} \neg \psi\left(x_{1}, \ldots, x_{n}\right)$ is an \mathcal{L}-sentence, so $\mathcal{N} \vDash \forall x_{1} \ldots \forall x_{n} \neg \psi\left(x_{1}, \ldots, x_{n}\right)$, in particular $\mathcal{M} \vDash \neg \psi\left(a_{1}, \ldots, a_{n}\right)$, a contradiction with that fact that $\psi\left(\underline{a}_{1}, \ldots, \underline{a}_{n}\right) \in$ $\mathcal{D}^{\mathrm{el}}(\mathcal{N})$.
Therefore, the theory $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\text {el }}(\mathcal{N})$ is consistent.
4. Let us first prove that b) implies a). Let \mathcal{O} be as in b) and φ be an \mathcal{L}-sentence. We have $\mathcal{M} \vDash \varphi$ if and only if $\mathcal{O} \vDash \varphi$ if and only if $\mathcal{N} \vDash \varphi$ and hence $\mathcal{M} \equiv \mathcal{N}$.
Let us now prove that a) implies b). Let us assume a). By the previous question, $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\text {el }}(\mathcal{N})$ is consistent. Let $\mathcal{O} \vDash \mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\text {el }}(\mathcal{N})$. By question 2, there exists elementary embeddings $f: \mathcal{M} \rightarrow \mathcal{O}$ and $g: \mathcal{N} \rightarrow \mathcal{O}$.

Problem 2 (λ-calculus) :

1. Let t be a normal λ-term such that $\vdash t: A \rightarrow A$. The last rule to be applied in the derivation of $\vdash t: A \rightarrow A$ cannot be (Ax) as the context is empty. Let us assume it is (\rightarrow_{E}) and hence t is an application. Because t is normal, there exists a variable $x \in V$ and normal terms $t_{1}, \ldots t_{n}$ such that $t=\left(\ldots\left((x) t_{1}\right) \ldots\right) t_{n}$. But we saw in class that if $\Gamma \vdash t, f \operatorname{var}(t) \subseteq f \operatorname{var}(\Gamma)$. But here $\Gamma=\varnothing$ and hence t cannot contain a free variable. So the last rule cannot be $\left(\rightarrow_{E}\right)$ and it has to be $\left(\rightarrow_{I}\right)$.
It follows that $t=\forall x u$ and that $x: A \vdash u: A$ holds. Because A is not of the form $B \rightarrow C$, the last applied rule to prove $x: A \vdash u: A$ cannot be $\left(\rightarrow_{I}\right)$. Be cause u is normal and does not begin with a λ, it is of the form $u=\left(\ldots\left((y) t_{1}\right) \ldots\right) t_{n}$ for some $y \in V$ and $t_{i} \in \Lambda$. So the n previous rules applied have to be $\left(\rightarrow_{E}\right)$ and there are types $A_{1}, \ldots A_{n}$ such that $x: A \vdash y: A_{1} \rightarrow\left(\ldots \rightarrow\left(A_{n} \rightarrow A\right) \ldots\right)$ holds. But the only applicable rule would be (Ax) which only applies if $y=x, n=0$ and $u=x$. So $t=\lambda x x$.
2. Let t be a normal λ-term such that $\vdash t: A \rightarrow A$. By similar considerations as above, $t=\lambda x u$ and $x: A \vdash u: A \rightarrow A$ holds. Let us assume that $u=\left(\ldots\left((y) t_{1}\right) \ldots\right) t_{n}$ for some $y \in V$ and $t_{i} \in \Lambda$. As above, there are types $A_{1}, \ldots A_{n}$ such that $x: A \vdash y$: $A_{1} \rightarrow\left(\ldots \rightarrow\left(A_{n} \rightarrow(A \rightarrow A)\right) \ldots\right)$ holds. But that typing statement cannot hold because $A \neq A_{1} \rightarrow\left(\ldots \rightarrow\left(A_{n} \rightarrow(A \rightarrow A)\right) \ldots\right)$ for any choice of n and A_{i}.
It follows that the last rule applied is $\left(\rightarrow_{I}\right)$, that $u=\lambda y v$ and that $\{x: A, y: A\} \vdash$ $v: A$ holds. The last applied rule cannot be $\left(\rightarrow_{I}\right)$ because A is not of the form $B \rightarrow C$. So $v=\left(\ldots\left((z) t_{1}\right) \ldots\right) t_{n}$ for some $z \in V$ and $t_{i} \in \Lambda$. As above, there must exist types A_{i} such that $\{x: A, y: A\} \vdash z: A_{1} \rightarrow\left(\ldots \rightarrow\left(A_{n} \rightarrow(A \rightarrow A)\right) \ldots\right)$ holds. The only applicable rule is (Ax) and hence $z=x$ or y and $n=0$. We have proved that $t=\lambda x \lambda y x$ or $t=\lambda x \lambda y y$.

Problem 3 (Boolean algebras) :

1. Let us first prove that a) implies b). Let $X \subseteq A$ whose lower upper bound is 1 . Then because f is complete, the lower upper bound of $f(X)$ is $f(1)=1$.
Let us now prove that b) implies a). Let $X \subseteq A$ whose upper bound in A is a. Let $Y=X \cup\left\{a^{\mathbf{c}}\right\}$. Any upper bound c of Y is an upper bound of X so $a \leqslant c$. Moroever, because $a^{\mathbf{c}} \in Y, a^{\mathbf{c}} \leqslant c$ and hence $c=1$. By hypothesis a), the lower upper bound of $f(Y)=f(X) \cap\left\{f(a)^{\mathbf{c}}\right\}$ is 1 .

For all all $x \in X, x \leqslant a$ and hence $f(x) \leqslant f(a)$. It follows that $f(a)$ is an upper bound of X. Moreover, let $c \in B$ be any upper bound of $f(X)$, then $c \cup f(a)^{\mathbf{c}}$ is an upper bound of $f(Y)$ and hence $c \cup f(a)^{\mathbf{c}}=1$. Applying De Morgan's law, we get that $c^{\mathbf{c}} \cap f(a)=0$ and hence $(1+c) \cdot f(a)=f(a)+c \cdot f(a)=0$, i.e. $c \cdot f(a)=f(a)$ and $f(a) \leqslant c$. So $f(a)$ is an upper bound that is smaller that any other upper bound. It is the lower upper bound of $f(X)$.
2. Let us first prove that a) implies b). Let I be a complete ideal and $f: A \rightarrow A / I$ be the canonical projection. Then $f^{-1}(0)=I$ and let us show that f is complete. Let $X \subseteq A$ whose lower upper is 1 and let $f(c)$ be an upper bound of $f(X)$. For all $x \in X, f(x) \leqslant f(c)$ and thus $f\left(x \cap c^{\mathbf{c}}\right)=f(x) \cap f(c)^{\mathbf{c}}=0$, i.e. $x \cap c^{\mathbf{c}} \in I$. Moreover, Let b be some upper bound of $\left\{x \cap c^{c}: x \in X\right\}$ (we want to show that $o c \leqslant b$). For all $x \in X$, we have $b \cup c \geqslant\left(x \cap c^{\mathbf{c}}\right) \cup(x \cap c)=x \cap\left(x^{\mathbf{c}} \cup c\right)=x$. So $b \cup c$ is an upper bound of X and hence $b \cup c=1$. It follows immediately that $b \geqslant c^{\mathrm{c}}$. Moreover c^{c} is clearly an upper bound of $\left\{x \cap c^{c}: x \in X\right\}$, so it is the lower upper bound.
But we proved earlier that $\left\{x \cap c^{\mathbf{c}}: x \in X\right\} \subseteq I$ and hence, as I is complete, $c^{\mathbf{c}} \in I$, i.e. $f(c)^{\mathbf{c}}=0$ and $f(c)=1$.

Let us now prove that b) implies a). Let f be as in b) and let $X \subseteq I$ whose lower upper bound is $a \in A$. By completeness of $f, f(a)$ is the lower upper bound of $f(X)=\{0\}$ and $f(a)=0$, i.e. $a \in I$.
3. Let us first prove it is closed under addition. Let $a, b \in \bigcap_{j} I_{j}$. We have $a+b \in I_{j}$ for all j and hence $a+b \in \bigcap_{j} I_{j}$. Let now $a \in A$ and $b \in \bigcap_{j} I_{j}$. For all j, we have $a \cdot b \in I_{j}$ and hence $a \cdot b \in \bigcap_{j} I_{j}$. Moreover $1 \notin I_{j}$ for all j so $1 \notin \bigcap_{j} I_{j}$ and $0 \in I_{j}$ for all j so $0 \in \bigcap_{j} I_{j}$. Finally, let $X \subseteq \bigcap_{j} I_{j}$, then the lower upper bound of X is in each of the I_{j} and hence in $\cap_{j} I_{j}$.
4. Let $J=\{I \subseteq A: I$ is a complete ideal and $X \subseteq I\}$ be non empty and $I_{0}=\bigcap_{I \in J} I$. By the previous question I_{0} is a complete ideal. It clearly contains X and it is contained in any complete ideal that contains X, so it is the smallest element of J.
5. First of all N is an ideal. If a and $c \in N$ then for all $b \in I,(a+b) \cdot c=a \cdot c+b \cdot c=0+0=0$. If $a \in A$ and $c \in N$, then $a \cdot c \cdot b=a \cdot 0=0$. Moreover $0 \cdot b=0$ for all $b \in I$ so $0 \in N$ and if $1 \in N$, then for all $b \in I, b=b \cap 1=0$, contradicting the fact that $I \neq 0$.

Let us now prove that N is complete. Let $X \subseteq N$ whose lower upper bound in A is a. Let $b \in I$, we have to show that $a \cap b=0$. For all $x \in X, x \cap b=0$ and hence $x \leqslant b^{\mathrm{c}}$. It follows that b^{c} is an upper bound of X and hence $a \leqslant b$, i.e. $a \cap b=0$.
Let $b \in N \cap I$. We have $b=b \cap b=0$. There remains to show that there is no (proper ${ }^{1}$) complete ideal containing $I \cup N$. Let us first show that le lower uppper bound of $I \cup N$ is 1 . Let $a \in A$ be an upper bound of $I \cup N$, then for all $b \in I, b \leqslant a$ and hence $b \cap a^{\mathbf{c}}=0$ so $a^{\mathbf{c}} \in N$ and hence $a^{\mathbf{c}} \leqslant a$, i.e. $1+a=(1+a) a=a+a=0$ and $a=1$.

If there existed a complete ideal J containing $I \cup N$, it would contain 1, a contradiction.

[^0]
[^0]: ${ }^{1}$ Remeber that we assumed all ideal s to be proper.

