Review problems

December 10th

Problem 1 (Model theory) :

Let \mathcal{M} be a substructure of \mathcal{N} . We say that \mathcal{M} is an elementary substructure if for every formula $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in \mathcal{M}$,

 $\mathcal{M} \vDash \varphi(a_1, \ldots, a_n)$ if and only if $\mathcal{N} \vDash \varphi(a_1, \ldots, a_n)$

- 1. Let \mathcal{M} be an \mathcal{L} -structure and $\mathcal{A} \leq \mathcal{M}$ be a substructure. Show that the following are equivalent:
 - a) For every \mathcal{L} -formula $\varphi(x_0, x_1, \ldots, x_n)$, $a_1, \ldots a_n \in A$ and $m \in M$, if $\mathcal{M} \models \varphi(m, a_1, \ldots, a_n)$, then there exists $a \in A$ such that $\mathcal{M} \models \varphi(a, a_1, \ldots, a_n)$.
 - b) \mathcal{A} is an elementary substructure of \mathcal{M} .
 - Hint: for a) \Rightarrow b), proceed by induction on formulas.
- 2. Let \mathcal{M} and \mathcal{N} be \mathcal{L} -structures. Show that the following are equivalent:
 - a) There exists an embedding $f : \mathcal{M} \to \mathcal{N}$ such that f(M) is an elementary substructure of \mathcal{N} (We say that f is an elementary embedding).
 - b) The structure \mathcal{N} can be enriched into an $\mathcal{L}(M)$ -structure \mathcal{N}^{\star} such that $\mathcal{N} \models \mathcal{D}^{\mathrm{el}}(\mathcal{M})$.
- 3. Let \mathcal{M} and \mathcal{N} be elementarily equivalent \mathcal{L} -structures. Show that $\mathcal{D}^{\mathrm{el}}(\mathcal{M}) \cup \mathcal{D}^{\mathrm{el}}(\mathcal{N})$ is consistent (one has to be careful to chose the new constants in $\mathcal{L}(M)$ and $\mathcal{L}(N)$ so that they are discinct, i.e. $\mathcal{L}(M) \cap \mathcal{L}(N) = \mathcal{L}$)
- 4. Let \mathcal{M} and \mathcal{N} be two \mathcal{L} -structure. Show that the following are equivalent:
 - a) $\mathcal{M} \equiv \mathcal{N}$.
 - b) There exists an \mathcal{L} -structure \mathcal{O} and elementary embedding $f : \mathcal{M} \to \mathcal{O}$ and $g : \mathcal{N} \to \mathcal{O}$.

Problem 2 (λ -calculus) :

Let $A \in W$ be a type variable.

- 1. Show that the only normal λ -terms such that $\vdash t : A \to A$ is $\lambda x x$.
- 2. Show that the only two normal λ -terms such that $\vdash t : A \to (A \to A)$ are $\lambda x \lambda y x$ and $\lambda x \lambda y y$.

Problem 3 (Boolean algebras) :

Let A be a Boolean algebra. An ideal $I \subseteq A$ is said to be complete it for all $X \subseteq I$ such that X has a lower upper bound $a \in A$, then $a \in I$. A homomorphism of Boolean algebras $f: A \to B$ is said to be complete if for all $X \subseteq A$, such that X has a lower upper bound $a \in A$, then f(a) is the lower upper bound of f(X).

1. Let $f: A \to B$ be a homomorphism of Boolean algebras. Show that the following are equivalent:

- a) f is complete;
- b) For all $X \subseteq A$ whose lower upper bound is 1, then 1 is also the lower upper bound of f(X).
- 2. Let $I \subseteq A$. Show that the following are equivalent:
 - a) I is a complete ideal;
 - b) There exists a complete homomorphism of Boolean algebras $f: A \to B$ such that $f^{-1}(0) = I$.
- 3. Let $(I_i)_{i \in J}$ be a family of complete ideals, show that $\bigcap_i I_i$ is a complete ideal.
- 4. Let $X \subseteq A$ be some set, show that if $\{I \subseteq A : I \text{ is a complete ideal and } X \subseteq I\}$ is non empty it has a smallest element, usually called the complete ideal generated by X.
- 5. Let $I \neq \{0\}$ be a complete ideal and define $N = \{a \in A : a \cap b = 0 \text{ for all } b \in I\}$. Show that N is a complete ideal, that $N \cap I = \{0\}$ and that no proper complete ideal contains both I and N.
- 6. Let $B = \{I \subseteq A : I \text{ complete ideal}\} \cup \{A\}$ (i.e. the set of proper and non proper ideals of A). Show that (B, \subseteq) is a distributive and complemented lattice such that every set in B has an upper lower bound and a lower upper bound (we say that B is complete).
- 7. Let $I_a = \{c \in A : a \leq c\}$. Show that $f : a \mapsto I_a$ is a injective homomorphism of Boolean algebras $A \to B$.
- 8. Show that every element in B is the lower upper bound of f(X) for some $X \subseteq A$.

We say that B is the completion of A.