Silvain Rideau 1091 Evans silvain.rideau@berkeley.edu www.normalesup.org/~srideau/en/teaching

Final

December 15th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem I (Vaughtian Pairs):

I. Let $T_{\rm RG}$ be the theory of the random graph. Show that $T_{\rm RG}$ has a Vaughtian pair.

Hint: If $G \models T_{RG}$ and $x \in G$, consider $G \smallsetminus \{x\}$.

2. Show that the theory of real closed fields does not have Vaughtian pairs.

Hint: You can use the fact that if $R \leq S$ is a strict extension of ordered fields then $S \smallsetminus R$ is dense (for the order) in S.

Problem 2:

Let K be an infinite field. Let $\mathcal{L} = \{V; 0: V, +: V^2 \to V, (\lambda_k: V \to V)_{k \in K}, W: V\}.$

- 1. Write a theory T whose models are K-vector spaces (where + is the addition, 0 is the neutral element and λ_k is scalar multiplication by $k \in K$) and such that W is a proper non trivial subspace.
- 2. Show that T eliminates quantifiers and is complete.
- 3. Assume that *K* is countable. Show that *T* is ω -stable.
- 4. Show that T is not κ -categorical for any infinite cardinal κ and give an example of a Vaughtian pair in T.
- 5. Show that W is strongly minimal in T.

Problem 3:

Let T be the theory of discrete linear orders without endpoints in the language with one sort and a binary predicate for the order. Recall that T is complete and it eliminates quantifiers if one adds the successor function.

- I. Let $M \models T$ and $X \subseteq M$ be $\mathcal{L}(M)$ -definable. Assume there exists $a \in M$ such that for all $c \in X(M)$, c > a. Show that X(M) has a minimal element.
- 2. Let \mathcal{L}' be \mathcal{L} with a new constant and T' be T in that new language (i.e. we don't say anything about the constant). Let $M \models T'$ and $X \subseteq M^n$ be $\mathcal{L}'(M)$ -definable. Show that $X(M) \cap [X] \neq \emptyset$.
- 3. Show that T' eliminates imaginaries.

Problem 4 :

Let \mathcal{L} be the language with one sort X and one function symbol $f : X \to X$.

- I. Write the theory T of \mathcal{L} -structures such that f is a bijection and that for all $n \in \mathbb{Z}_{>0}$, $f^{(n)}$, the *n*-th iterate of f, does not have fixed points.
- 2. Show that T has quantifier elimination and is complete.
- 3. Show that T is strongly minimal.
- 4. Show that for all $M \models T$ and $A \subseteq M$, $acl(A) = dcl(A) = \{f^n(a) : a \in A, n \in \mathbb{Z}\}.$
- 5. Let a_1 and $a_2 \in M \models T$ be such that $\{a_1, a_2\}$ is coded by some tuple b (i.e. $b \in {}^{r}\{a_1, a_2\} \cap M$ and $\{a_1, a_2\}$ is $\mathcal{L}(b)$ -definable). Show that there exists an \mathcal{L} -formula $\varphi(x, y)$ such that $M \models \varphi(a_1, a_2)$ and $M \models \neg \varphi(a_2, a_1)$.
- 6. Show that T weakly eliminates imaginaries but does not eliminate imaginaries.