Final

December 15th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem I (Vaughtian Pairs) :
I. Let T_{RG} be the theory of the random graph. Show that T_{RG} has a Vaughtian pair.

Hint: If $G \vDash T_{\mathrm{RG}}$ and $x \in G$, consider $G \backslash\{x\}$.
2. Show that the theory of real closed fields does not have Vaughtian pairs.

Hint: You can use the fact that if $R \leqslant S$ is a strict extension of ordered fields then S, R is dense (for the order) in S.

Problem 2 :

Let K be an infinite field. Let $\mathcal{L}=\left\{V ; 0: V,+: V^{2} \rightarrow V,\left(\lambda_{k}: V \rightarrow V\right)_{k \in K}, W: V\right\}$.
I. Write a theory T whose models are K-vector spaces (where + is the addition, 0 is the neutral element and λ_{k} is scalar multiplication by $k \in K$) and such that W is a proper non trivial subspace.
2. Show that T eliminates quantifiers and is complete.
3. Assume that K is countable. Show that T is ω-stable.
4. Show that T is not κ-categorical for any infinite cardinal κ and give an example of a Vaughtian pair in T.
5. Show that W is strongly minimal in T.

Problem 3 :

Let T be the theory of discrete linear orders without endpoints in the language with one sort and a binary predicate for the order. Recall that T is complete and it eliminates quantifiers if one adds the successor function.
I. Let $M \vDash T$ and $X \subseteq M$ be $\mathcal{L}(M)$-definable. Assume there exists $a \in M$ such that for all $c \in X(M), c>a$. Show that $X(M)$ has a minimal element.
2. Let \mathcal{L}^{\prime} be \mathcal{L} with a new constant and T^{\prime} be T in that new language (i.e. we don't say anything about the constant). Let $M \vDash T^{\prime}$ and $X \subseteq M^{n}$ be $\mathcal{L}^{\prime}(M)$-definable. Show that $X(M) \cap^{「} X^{`} \neq \varnothing$.
3. Show that T^{\prime} eliminates imaginaries.

Problem 4 :

Let \mathcal{L} be the language with one sort X and one function symbol $f: X \rightarrow X$.
I. Write the theory T of \mathcal{L}-structures such that f is a bijection and that for all $n \in \mathbb{Z}_{>0}$, $f^{(n)}$, the n-th iterate of f, does not have fixed points.
2. Show that T has quantifier elimination and is complete.
3. Show that T is strongly minimal.
4. Show that for all $M \vDash T$ and $A \subseteq M, \operatorname{acl}(A)=\operatorname{dcl}(A)=\left\{f^{n}(a): a \in A, n \in \mathbb{Z}\right\}$.
5. Let a_{1} and $a_{2} \in M \vDash T$ be such that $\left\{a_{1}, a_{2}\right\}$ is coded by some tuple b (i.e. $b \in{ }^{「}\left\{a_{1}, a_{2}\right\}^{\top} \cap$ M and $\left\{a_{1}, a_{2}\right\}$ is $\mathcal{L}(b)$-definable). Show that there exists an \mathcal{L}-formula $\varphi(x, y)$ such that $M \vDash \varphi\left(a_{1}, a_{2}\right)$ and $M \vDash \neg \varphi\left(a_{2}, a_{1}\right)$.
6. Show that T weakly eliminates imaginaries but does not eliminate imaginaries.

