Silvain Rideau 1091 Evans

Solutions to the midterm

October 16th

Problem 1:

Let \mathcal{L} be the language with one sort X and one predicate symbol $E \subseteq X^2$.

I. Write a theory *T* such that in models of *T*, *E* is an equivalence relation with exactly one class of size *n* for every $n \in \mathbb{Z}_{>0}$ (and possibly infinite classes).

Solution: Let $\theta_{\geq n}(x) := \exists x_1 \dots \exists x_n \land_{i \neq j} x_i \neq x_j \land \land_i x E x_i \text{ and } \theta_{=n}(x) := \theta_{\geq n}(x) \land \neg \theta_{\geq n+1}(x)$. The formula $\theta_{=n}(x)$ states that the class of x has size n. We define:

$$T := \{ \forall x \, x E x, \forall x \forall y \, x E y \to y E x, \forall x \forall y \forall z \, (x E y \land y E z) \to x E z \} \\ \cup \{ \exists x \, \theta_{=n}(x) \land (\forall y \, \theta_{=n}(y) \to x E y) : n \in \mathbb{Z}_{>0} \}$$

2. Show that T does not eliminate quantifiers.

Solution: Let $M := \prod_{n>0} \{n\} \times \{0, \dots, n-1\}$. Let *E* be the equivalence class that holds when the first coordinate is equal. Then $(M, E) \models T$. But note that we have an embedding $f : M \to M$ sending (i, j) to (i + 1, j). This embedding is not elementary as $M \models \theta_{=1}((1, 0)))$ but $M \neq \theta_{=1}(f((1, 0)))$.

3. Let $\mathcal{L}^* := \mathcal{L} \cup \{c_{n,i} : n \in \mathbb{Z}_{>0} \text{ and } 0 \le i < n\}$. Write a theory T^* whose models are models of T in which the class with n elements is $\{c_{n,0}, \ldots, c_{n,n-1}\}$.

Solution: We define $T^* := T \cup \{\theta_{=n}(c_{n,i}) : n \in \mathbb{Z}_{>0} \text{ and } 0 \le i < n\}$. Note that in models of T^* , we know *n* elements in the class with *n* elements, so we know them all.

4. Show that T^* eliminates quantifiers.

Solution: We have to show that if $M, N \models T^*$, f is a partial \mathcal{L}^* -embedding from M to N with domain A and $a \in M$, if N is $|A|^+$ -saturated, then f can be extended to a. Note that f has a unique extension to $A \cup \{c_{n,i}^M : i \in \mathbb{Z}_{>0} \text{ and } 0 \le i < n\}$ so we may assume that all the interpretations of the constants are in A. We can also assume that $a \notin A$ otherwise f is already defined at a. Let us first assume that there exists $b \in A$ such that aEb. Since every element in one of the finite class is named by a constant, the class of f(b) is infinite. It follows that $\pi(x) \coloneqq \{x \ge f(b)\} \cup \{x \ne f(a) : a \in A\}$ is a partial type and, since N is $|A|^+$ -saturated, we can find $d \in N \setminus f(A)$ such that dEf(b). It is now easy to check that we can extend f by sending a to d.

If there is no $b \in A$ such that aEb, then, by $|A|^+$ -saturation, we find $d \in N$ such that the *E*-class of *d* does not intersect f(A) (consider the type $\pi(x) \coloneqq \{\neg xEf(a) : a \in A\}$ which is consistent because *E* has infinitely many classes). It is now easy to show that *f* can be extended by sending *a* to *d*.

5. Show that T has a prime model.

Solution: Let M^* be the structure M as in Question 2 where $c_{n,i}$ is interpreted by (n, i). Then $M^* \models T^*$. Moreover, M^* can be embedded in every model of T^* by sending (n,i) to the interpretation of $c_{n,i}$. Since T^* eliminates quantifiers, the embedding is elementary and M^* is a prime model of T^* . Now if $N \models T$, N can be enriched into a model of T^* and therefore M^* embeds elementarily (as an \mathcal{L}^* -structure) in N^* . But it follows immediately that this embedding is also an elementary \mathcal{L} -embedding.

6. Show that *T* has saturated models in all cardinality $\kappa \ge \kappa_0$.

Solution: Let M_{κ} be the model $M \sqcup \kappa^2$ where the equivalence relation is given by equality if the first coordinate. Then $M_{\kappa} \models T$. Now, let $A \subseteq M_{\kappa}$ be such that $|A| < \kappa$ and p be a complete \mathcal{L} -type over A. If p contains x = a then p then the only possible realization of p is a and since p is a type (in particular it is satisfiable in some elementary extension), it must be realized by a. If p contains xEa for some $a \in A$ (but $x \neq a$ for all $a \in A$), then the E-class of A in M_{κ} has size κ which is strictly larger than |A| so we can find $b \in M_{\kappa} \setminus A$ such that bEa. It is easy to see by quantifier elimination that any two points (in an elementary extension of M_{κ}) verifying bEa and $b \notin A$ have the same type over A. For example, the map sending fixing A and sending b_1 to b_2 is a partial embedding which is elementary by quantifier elimination. It follows that b realizes p.

Finally, if p contains $\neg x Ea$ for all $a \in A$ then, since $|A| < \kappa$, there must be a class in M_{κ} that does not contain any point of A. As above, any b is this class is a realization of p.

Problem 2:

Let *T* be a complete \mathcal{L} -theory with one sort *X* and no function symbols or constants. Assume that *T* eliminates quantifiers. Let \mathcal{L}_f be the language \mathcal{L} with a new sort *Y* and function symbol $f: X \to Y$.

- I. Write a theory T_f such that in models of T:
 - *Y* is infinite and *f* is surjective;
 - For all $a \in Y$, $f^{-1}(a)$ is a model of T;
 - For all \mathcal{L} -predicate $R(x_1, \ldots, x_n)$ and tuple $x_1, \ldots, x_n \in X$, if $R(x_1, \ldots, x_n)$ holds then for all $i, j, f(x_i) = f(x_j)$.

Solution: For all \mathcal{L} -formula φ we define its realization to $f^{-1}(y)$, φ_y , by induction. If $\varphi = Rx_1 \dots x_n$, $\varphi_y \coloneqq \bigwedge_i f(x_i) = y \land \varphi, (\neg \varphi)_y \coloneqq \neg(\varphi_y), (\varphi \land \psi)_y \coloneqq (\varphi_y) \land (\psi_y)$ and $(\exists x \varphi)_y \coloneqq \exists x f(x) = y \land \varphi_y$. Note that φ_y holds in an \mathcal{L}_f -structure if an only if φ holds in $f^{-1}(y)$. We define:

$$T_f := \{ \exists y \, y = y \land \forall y \exists x \, f(x) = y \} \\ \cup \{ \forall y \, \varphi_y : \varphi \in T \} \\ \cup \{ \forall x_1 \dots \forall x_n \, Rx_1 \dots x_n \to \bigwedge_i f(x_i) = f(x_1) : R \in \mathcal{L} \}$$

2. Show that T_f eliminates quantifiers.

Solution: Let $M, N \models T_f, g$ a partial embedding from M into N whose domain is A and $a \in M$. Assuming that N is $|A|^+$ -saturated, we have to extend g to A. We may assume that A is closed under f.

Let us first assume that $a \in Y(M) \setminus A$. Then $f^{-1}(a) \cap A = \emptyset$. Pick any $b \in Y(N) \setminus g(A)$ (such a *b* exists by saturation). Then *g* can be extended by sending *a* to *b*.

If $a \in X(M)$, by the previous case we may assume that $c := f(a) \in A$. We have that $f^{-1}(c), f^{-1}(g(c)) \models T$ and since T is complete, we have $f^{-1}(c) \equiv f^{-1}(g(c))$. Let g_c be the restriction of g to $f^{-1}(c)$. The map g_c is a partial embedding from $f^{-1}(c)$ into

 $f^{-1}(g(c))$. By quantifier elimination, g_c is a partial elementary embedding. When the domain of g_c is empty, we are using the fact that T is complete. Note that, since N is $|A|^+$ -saturated, so is $f^{-1}(g(c))$. It follows that g_c can be extended to a. This extension is also an extension of g since predicates of \mathcal{L} are always false when applied to points in distinct fibers.

3. Let $M \models T_f$, show that all $\mathcal{L}_f(M)$ -definable subsets of Y(M) are finite or cofinite.

Solution: Atomic $\mathcal{L}(M)$ -formulas with a free variable in Y are (equivalent to one) of the form y = a where $a \in M$, whose interpretation is finite, y = y whose interpretation is cofinite and a = b whose interpretation is either finite or cofinite depending on whether it is true or false. It follows that all quantifier free formulas with a free variable in Y define finite or cofinite sets. By quantifier elimination, all definable subsets of Y are finite of cofinite.

4. Let $\kappa \ge \aleph_0$ be a cardinal. Show that if *T* is κ -stable, then T_f is κ -stable.

Solution: Let $M \models T_f$ be of size κ . We have to show that $|S_y(M) \cup S_x(M)| = \kappa$ for y (resp. x) a variable in the sort Y (resp. X). Let us start with types in the variable y. Since all the $\mathcal{L}_f(M)$ -definable subsets of Y are finite or cofinite, the partial type $\{x \neq a : a \in Y(M)\}$ is complete. It follows that the only types in $S_y(M)$ are those containing x = a for some $a \in M$ and the completion of $\{x \neq a : a \in Y(M)\}$. There are κ of those.

Now, pick $p \in S_x(M)$. Let us first consider the case where p contains f(x) = a for some $a \in Y(M)$. Since the relations are not defined outside of a given fiber. Any atomic formula $\theta(y,c)$ is not in p if c contains elements outside of $f^{-1}(a) \cap M$. It follows (by quantifier elimination), that p is completely determined by the $\mathcal{L}(f^{-1}(a) \cap M)$ -formulas it contains, i.e. an \mathcal{L} -type in $S_x(f^{-1}(a) \cap M)$, of which there are at most κ by κ -stability of T.

Finall if p contains $f(x) \neq a$ for all $a \in Y(M)$, p is completely determined by the \mathcal{L} -formulas it contains, i.e. an \mathcal{L} -type in $\mathcal{S}_x(T)$, of which there are, once more, at most κ by κ -stability of T.