Midterm

October 16th

To do a later question in a problem, you can always assume a previous question even if you have not answered it.

Problem 1 :

Let \mathcal{L} be the language with one sort X and one predicate symbol $E \subseteq X^2$.

- I. Write a theory *T* such that in models of *T*, *E* is an equivalence relation with exactly one class of size *n* for every $n \in \mathbb{Z}_{>0}$ (and possibly infinite classes).
- 2. Show that T does not eliminate quantifiers.
- 3. Let $\mathcal{L}^* := \mathcal{L} \cup \{c_{n,i} : n \in \mathbb{Z}_{>0} \text{ and } 0 \le i < n\}$. Write a theory T^* whose models are models of T in which the class with n elements is $\{c_{n,0}, \ldots, c_{n,n-1}\}$.
- 4. Show that T^* eliminates quantifiers.
- 5. Show that T has a prime model.
- 6. Show that *T* has saturated models in all cardinality $\kappa \ge \aleph_0$.

Problem 2:

Let *T* be a complete \mathcal{L} -theory with one sort *X* and no function symbols or constants. Assume that *T* eliminates quantifiers. Let \mathcal{L}_f be the language \mathcal{L} with a new sort *Y* and function symbol $f: X \to Y$.

- I. Write a theory T_f such that in models of T:
 - *Y* is infinite and *f* is surjective;
 - For all $a \in Y$, $f^{-1}(a)$ is a model of T;
 - For all \mathcal{L} -predicate $R(x_1, \ldots, x_n)$ and tuple $x_1, \ldots, x_n \in X$, if $R(x_1, \ldots, x_n)$ holds then for all $i, j, f(x_i) = f(x_j)$.
- 2. Show that T_f eliminates quantifiers.
- 3. Let $M \models T_f$, show that all $\mathcal{L}_f(M)$ -definable subsets of Y(M) are finite or cofinite.
- 4. Let $\kappa \ge \kappa_0$ be a cardinal. Show that if *T* is κ -stable, then T_f is κ -stable.