Silvain Rideau 1091 Evans

Final

December 8th and 9th $\,$

Problem 1:

Let G be a group and let \mathcal{L}_G be the language with one sort X and for each $g \in G$, a function $\lambda_g : X \to X$. Let T_G be the theory whose models are the infinite \mathcal{L}_G -structures where $(g, x) \mapsto \lambda_g(x)$ is a free action of G. Recall that an action of G is free if for all $x \in X$, $x = g \cdot x$ implies g = 1.

- 1. Show that T_G eliminates quantifiers, is complete and strongly minimal.
- 2. Let $A \subseteq M \models T_G$ and $a \in M^x$ a tuple. Show that MR(a/A) is the number of *G*-orbits containing points of *a* but no points of *A*.
- 3. Let $A \subseteq M \models T_G$ be infinite. Show that $T_G \cup \Delta(A)$ weakly eliminates imaginaries, where $\Delta(A)$ is the quantifier free diagram of A in M.
- 4. Let G be finite. Show that T_G is \aleph_0 -categorical.
- 5. Still assuming G finite, show that T_G weakly eliminates imaginaries.

Problem 2:

Let T be a complete, totally transcendental theory, $A \subseteq M \models T$, $p \in \mathcal{S}(A)$ and α an ordinal. We say that $U(p) \ge \alpha$ if:

- $\alpha = 0;$
- $\alpha = \beta + 1$ and there are $A \subseteq B \subseteq N \ge M$ and $q \in \mathcal{S}(B)$ a forking extension of p such that $U(q) \ge \beta$;
- α is limit and for all $\beta < \alpha$, $U(p) \ge \beta$.

We say that $U(p) = \alpha$ if $U(p) \ge \alpha$ but $U(p) < \alpha + 1$. If $U(p) \ge \alpha$, for every ordinal α , we say that $U(p) = \infty$.

- 1. Show that, for all $p \in \mathcal{S}(A)$, $U(p) \leq MR(p) < \infty$.
- 2. Show that U(p) = 0 if and only if p is an algebraic type.
- 3. Assume T strongly minimal, show that, for all $p \in \mathcal{S}(A)$, U(p) = MR(p).
- 4. Let $a, b \in M$ be tuples, show that $U(tp(ab/A)) \ge U(tp(a/A))$.
- 5. Let $a, b \in M$ be tuples, assume that $b \in \operatorname{acl}(Aa)$, show that $\operatorname{U}(\operatorname{tp}(b/A)) \leq \operatorname{U}(\operatorname{tp}(a/A))$.

Problem 3:

Let $A, A' \subseteq M \models T$ a complete theory.

• We say that two strongly minimal types $p, q \in \mathcal{S}(A)$ are almost orthogonal (and we write $p \perp^{a} q$) if for all $a \models p$ (in some elementary extension of M), no tuple from $\operatorname{acl}(Aa)$ realizes q.

- We say that two strongly minimal types $p \in \mathcal{S}(A)$ and $q \in \mathcal{S}(A')$ are orthogonal, and we write $p \perp q$, if for all $A \cup A' \subseteq B \subseteq N \ge M$, $p|_B \perp^a q|_B$
- 1. Let $p, q \in \mathcal{S}(A)$ be strongly minimal types. Show that $p \perp^{a} q$ if and only if $p(x) \cup q(y)$ has a unique completion over A.
- 2. Show that \pm non orthogonality is an equivalence relation on the set $X := \bigcup_{A \subseteq M} \{ p \in \mathcal{S}(A) : p \text{ strongly minimal} \}.$
- 3. Let $p \in \mathcal{S}(A)$ be strongly minimal. Show that p is isolated if and only for any strongly minimal $\varphi \in p$, $\varphi(M) \cap \operatorname{acl}(A)$ is finite. Conclude that for all $A \subseteq B \subseteq N \ge M$, if $p|_B$ is isolated, then so is p.
- 4. Assume T is totally transcendental, $M \models T$ and $p, q \in \mathcal{S}(M)$ are strongly minimal. Show that there exists $N \ge M$ realizing p and omitting q.
- 5. Assume \mathcal{L} is countable and T is uncountably categorical. Show that there is a unique non orthogonality class of strongly minimal types.